Project description:Rearrangements of the anaplastic lymphoma kinase (ALK) gene occur infrequently in non-small-cell lung cancer (NSCLC), but provide an important paradigm for oncogene-directed therapy in this disease. Crizotinib, an orally bioavailable inhibitor of ALK, provides significant benefit for patients with ALK-positive (ALK+) NSCLC in association with characteristic, mostly mild, toxic effects, and this drug has been approved by the FDA for clinical use in this molecularly defined subgroup of lung cancer. Many new ALK inhibitors are being developed and understanding the challenges of determining and addressing the adverse effects that are likely to be ALK specific, while maximizing the time of benefit on targeted agents, and understanding the mechanisms that underlie drug resistance will be critical in the future for informing the optimal therapy of ALK+ NSCLC.
Project description:Anaplastic lymphoma kinase (ALK) is a potent oncogenic driver in lung cancer. ALK tyrosine kinase inhibitors yield significant benefit in patients with ALK fusion-positive (ALK+) lung cancers; yet the durability of response is limited by drug resistance. Elucidation of on-target resistance mechanisms has facilitated the development of next-generation ALK inhibitors, but overcoming ALK-independent resistance mechanisms remains a challenge. In this Review, we discuss the molecular underpinnings of acquired resistance to ALK-directed therapy and highlight new treatment approaches aimed at inducing long-term remission in ALK+ disease.
Project description:Alveolar macrophages (AMs) are critical components of the innate defense mechanism in the lung. Nestled tightly within the alveoli, AMs, derived from the yolk-sac or bone marrow, can phagocytose foreign particles, defend the host against pathogens, recycle surfactant, and promptly respond to inhaled noxious stimuli. The behavior of AMs is tightly dependent on the environmental cues whereby infection, chronic inflammation, and associated metabolic changes can repolarize their effector functions in the lungs. Several factors within the tumor microenvironment can re-educate AMs, resulting in tumor growth, and reducing immune checkpoint inhibitors (ICIs) efficacy in patients treated for non-small cell lung cancer (NSCLC). The plasticity of AMs and their critical function in altering tumor responses to ICIs make them a desirable target in lung cancer treatment. New strategies have been developed to target AMs in solid tumors reprograming their suppressive function and boosting the efficacy of ICIs. Here, we review the phenotypic and functional changes in AMs in response to sterile inflammation and in NSCLC that could be critical in tumor growth and metastasis. Opportunities in altering AMs' function include harnessing their potential function in trained immunity, a concept borrowed from memory response to infections, which could be explored therapeutically in managing lung cancer treatment.
Project description:BackgroundPhotodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic.MethodsA literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement.ResultsThe most notable challenges of PDT and opportunities to improve them have been identified and discussed.ConclusionsThe recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Project description:Patient-led advocacy organizations in the anaplastic lymphoma kinase (ALK)-positive lung cancer space are becoming increasingly influential. ALK Positive Inc. (hereafter "ALK Positive") is probably the most widely known among these organizations. Evolving from a private Facebook Support Group created in 2015 to provide a forum for ALK-positive lung cancer patients and caregivers to exchange information, empathy and support, ALK Positive transitioned in 2021 into a 501(c)(3) non-profit organization (NPO), with the mission to improve the life expectancy and quality of life for ALK-positive cancer patients worldwide. This review provides a historical perspective on the growth, activities and aspirations of ALK Positive to pursue patient advocacy and enable development of new therapies for individuals with ALK-positive cancers. This growth has been enabled by the collaborative efforts of ALK-positive cancer patients, their care-partners and oncologists, academic researchers, other NPO advocacy organizations, and members of the biotech and pharma communities who develop new therapies for ALK-positive cancers. ALK Positive has grown to provide a variety of patient services, to award competitive support for translational research and clinical trials intended to enable new therapies and improved quality and extent of life for ALK-positive cancer patients, and to collaborate with industry and academia to accelerate the development of improved therapies for ALK-positive cancer patients. ALK Positive continues grappling with a variety of challenges including further improving patient quality of life, enabling the development of new therapies, and extending its already substantial global reach and impact. This review summarizes many of the tangible impacts and aspirations engendered by ALK Positive for ALK-positive cancer patients in the past, present and future tenses-where we have been, where we stand and where we hope to go. The content is based on the historical recollections of the authors, and is accurate as of November 30, 2022, to the best of the authors' knowledge.
Project description:Targeting genomic alterations, such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements, have radically changed the treatment of patients with non-small cell lung cancer (NSCLC). In the case of ALK-rearranged gene, subsequent rapid development of effective genotype-directed therapies with ALK tyrosine kinase inhibitors (TKIs) triggered major advances in the personalized molecularly based approach of NSCLC. Crizotinib was the first-in-class ALK TKI with proven superiority over standard platinum-based chemotherapy for the 1st-line therapy of ALK-rearranged NSCLC patients. However, the acquired resistance to crizotinib and its diminished efficacy to the central nervous system (CNS) relapse led to the development of several novel ALK inhibitors, more potent and with different selectivity compared to crizotinib. To date, four ALK TKIs, crizotinib, ceritinib, alectinib and brigatinib have received approval from the Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) and even more agents are currently under investigation for the treatment of ALK-rearranged NSCLC. However, the optimal frontline approach and the exact sequence of ALK inhibitors are still under consideration. Recently announced results of phase III trials recognized higher efficacy of alectinib compared to crizotinib in first-line setting, even in patients with CNS involvement. In this review, we will discuss the current knowledge regarding the biology of the ALK-positive NSCLC, the available therapeutic inhibitors and we will focus on the raised issues from their use in clinical practise.
Project description:Successful treatment of cancer remains a challenge, due to the unique pathophysiology of solid tumors, and the predictable emergence of resistance. Traditional methods for cancer therapy including radiotherapy, chemotherapy, and immunotherapy all have their own limitations. A novel approach is bacteriotherapy, either used alone, or in combination with conventional methods, has shown a positive effect on regression of tumors and inhibition of metastasis. Bacteria-assisted tumor-targeted therapy used as therapeutic/gene/drug delivery vehicles has great promise in the treatment of tumors. The use of bacteria only, or in combination with conventional methods was found to be effective in some experimental models of cancer (tumor regression and increased survival rate). In this article, we reviewed the major advantages, challenges, and prospective directions for combinations of bacteria with conventional methods for tumor therapy.
Project description:EML4-ALK is a fusion-type protein tyrosine kinase that is generated in human non-small-cell lung cancer (NSCLC) as a result of a recurrent chromosome inversion, inv (2)(p21p23). Although mouse 3T3 fibroblasts expressing human EML4-ALK form transformed foci in culture and s.c. tumors in nude mice, it has remained unclear whether this fusion protein plays an essential role in the carcinogenesis of NSCLC. To address this issue, we have now established transgenic mouse lines that express EML4-ALK specifically in lung alveolar epithelial cells. All of the transgenic mice examined developed hundreds of adenocarcinoma nodules in both lungs within a few weeks after birth, confirming the potent oncogenic activity of the fusion kinase. Although such tumors underwent progressive enlargement in control animals, oral administration of a small-molecule inhibitor of the kinase activity of ALK resulted in their rapid disappearance. Similarly, whereas i.v. injection of 3T3 cells expressing EML4-ALK induced lethal respiratory failure in recipient nude mice, administration of the ALK inhibitor effectively cleared the tumor burden and improved the survival of such animals. These data together reinforce the pivotal role of EML4-ALK in the pathogenesis of NSCLC in humans, and they provide experimental support for the treatment of this intractable cancer with ALK inhibitors.
Project description:Pancreatic carcinoma (PC) is one of the leading causes of cancer-related deaths worldwide. Despite early detection and advances in therapeutics, the prognosis remains dismal. The outcome and therapeutic approach are dependent on the stage of PC at the time of diagnosis. The standard of care is surgery, followed by adjuvant chemotherapy. The advent of newer drugs has changed the landscape of adjuvant therapy. Moreover, recent trials have highlighted the role of neoadjuvant therapy and chemoradiotherapy for resectable and borderline resectable PC. As we progress towards a better understanding of tumor biology, genetics, and microenvironment, novel therapeutic strategies and targeted agents are now on the horizon. We have described the current and emerging therapeutic strategies in PC.
Project description:Crizotinib, a selective tyrosine kinase inhibitor (TKI), shows marked activity in patients whose lung cancers harbor fusions in the gene encoding anaplastic lymphoma receptor tyrosine kinase (ALK), but its efficacy is limited by variable primary responses and acquired resistance. In work arising from the clinical observation of a patient with ALK fusion-positive lung cancer who had an exceptional response to an insulin-like growth factor 1 receptor (IGF-1R)-specific antibody, we define a therapeutic synergism between ALK and IGF-1R inhibitors. Similar to IGF-1R, ALK fusion proteins bind to the adaptor insulin receptor substrate 1 (IRS-1), and IRS-1 knockdown enhances the antitumor effects of ALK inhibitors. In models of ALK TKI resistance, the IGF-1R pathway is activated, and combined ALK and IGF-1R inhibition improves therapeutic efficacy. Consistent with this finding, the levels of IGF-1R and IRS-1 are increased in biopsy samples from patients progressing on crizotinib monotherapy. Collectively these data support a role for the IGF-1R-IRS-1 pathway in both ALK TKI-sensitive and ALK TKI-resistant states and provide a biological rationale for further clinical development of dual ALK and IGF-1R inhibitors.