Project description:Acceleration measurement is of great significance due to its extensive applications in military/industrial fields. In recent years, scientists have been pursuing methods to improve the performance of accelerometers, particularly through seeking new sensing mechanisms. Herein, we present a synchronized oscillator-based enhancement approach to realize a fivefold resolution improvement of a microelectromechanical resonant accelerometer. Through the unidirectional electrical coupling method, we achieved synchronization of the sensing oscillator of the microelectromechanical resonant accelerometer and an external reading oscillator, which remarkably enhanced the stability of the oscillation system to 19.4 ppb and the resolution of the accelerometer to 1.91 μg. In addition, the narrow synchronization bandwidth of conventional synchronized oscillators was discussed, and hence, we propose a novel frequency automatic tracking system to expand the synchronization bandwidth from 113 to 1246 Hz, which covers the full acceleration measurement range of ±1 g. For the first time, we utilized a unidirectional electrical synchronization mechanism to improve the resolution of resonant sensors. Our comprehensive scheme provides a general and powerful solution for performance enhancement of any microelectromechanical system (MEMS) resonant sensor, thereby enabling a wide spectrum of applications.
Project description:Microelectromechanical system (MEMS) devices, such as accelerometers, are widely used across industries, including the automotive, consumer electronics, and medical industries. MEMS are efficiently produced at very high volumes using large-scale semiconductor manufacturing techniques. However, these techniques are not viable for the cost-efficient manufacturing of specialized MEMS devices at low- and medium-scale volumes. Thus, applications that require custom-designed MEMS devices for markets with low- and medium-scale volumes of below 5000-10,000 components per year are extremely difficult to address efficiently. The 3D printing of MEMS devices could enable the efficient realization and production of MEMS devices at these low- and medium-scale volumes. However, current micro-3D printing technologies have limited capabilities for printing functional MEMS. Herein, we demonstrate a functional 3D-printed MEMS accelerometer using 3D printing by two-photon polymerization in combination with the deposition of a strain gauge transducer by metal evaporation. We characterized the responsivity, resonance frequency, and stability over time of the MEMS accelerometer. Our results demonstrate that the 3D printing of functional MEMS is a viable approach that could enable the efficient realization of a variety of custom-designed MEMS devices, addressing new application areas that are difficult or impossible to address using conventional MEMS manufacturing.
Project description:This paper presents a high-performance MEMS accelerometer with a DC/AC electrostatic stiffness tuning capability based on double-sided parallel plates (DSPPs). DC and AC electrostatic tuning enable the adjustment of the effective stiffness and the calibration of the geometric offset of the proof mass, respectively. A dynamical model of the proposed accelerometer was developed considering both DC/AC electrostatic tuning and the temperature effect. Based on the dynamical model, a self-centering closed loop is proposed for pulling the reference position of the force-to-rebalance (FTR) to the geometric center of DSPP. The self-centering accelerometer operates at the optimal reference position by eliminating the temperature drift of the readout circuit and nulling the net electrostatic tuning forces. The stiffness closed-loop is also incorporated to prevent the pull-in instability of the tuned low-stiffness accelerometer under a dramatic temperature variation. Real-time adjustments of the reference position and the DC tuning voltage are utilized to compensate for the residue temperature drift of the proposed accelerometer. As a result, a novel controlling approach composed of a self-centering closed loop, stiffness-closed loop, and temperature drift compensation is achieved for the accelerometer, realizing a temperature drift coefficient (TDC) of approximately 7 μg/°C and an Allan bias instability of less than 1 μg.
Project description:In this research, a high-efficiency design method of the capacitive MEMS accelerometer is proposed. As the MEMS accelerometer has high precision and a compact structure, much research has been carried out, which mainly focused on the structural design and materials selection. To overcome the inconvenience and inaccuracy of the traditional design method, an orthogonal design and the particle swarm optimization (PSO) algorithm are introduced to improve the design efficiency. The whole process includes a finite element method (FEM) simulation, high-efficiency design, and verification. Through the theoretical analysis, the working mechanism of capacitive MEMS accelerometer is clear. Based on the comparison among the sweep calculation results of these parameters in the FEM software, four representative structural parameters are selected for further study, and they are le, nf, lf and wPM, respectively. le and lf are the length of the sensing electrode and fixed electrode on the right. nf is the number of electrode pairs, and wPM is the width of the mass block. Then, in order to reduce computation, an orthogonal design is adopted and finally, 81 experimental groups are produced. Sensitivity SV and mass Ma are defined as evaluation parameters, and structural parameters of experimental groups are imported into the FEM software to obtain the corresponding calculation results. These simulation data are imported into neural networks with the PSO algorithm. For a comprehensively accurate examination, three cases are used to verify our design method, and every case endows the performance parameters with different weights and expected values. The corresponding structural parameters of each case are given out after 24 iterations. Finally, the maximum calculation errors of SV and Ma are 1.2941% and 0.1335%, respectively, proving the feasibility of the high-efficiency design method.
Project description:This paper introduces a differential vibrating beam MEMS accelerometer demonstrating excellent long-term stability for applications in gravimetry and seismology. The MEMS gravimeter module demonstrates an output Allan deviation of 9 μGal for a 1000 s integration time, a noise floor of 100 μGal/√Hz, and measurement over the full ±1 g dynamic range (1 g = 9.81 ms-2). The sensitivity of the device is demonstrated through the tracking of Earth tides and recording of ground motion corresponding to a number of teleseismic events over several months. These results demonstrate that vibrating beam MEMS accelerometers can be employed for measurements requiring high levels of stability and resolution with wider implications for precision measurement employing other resonant-output MEMS devices such as gyroscopes and magnetometers.
Project description:Magnetic sensing is present in our everyday interactions with consumer electronics and demonstrates the potential for the measurement of extremely weak biomagnetic fields, such as those of the heart and brain. In this work, we leverage the many benefits of microelectromechanical system (MEMS) devices to fabricate a small, low-power, and inexpensive sensor whose resolution is in the range of biomagnetic fields. At present, biomagnetic fields are measured only by expensive mechanisms such as optical pumping and superconducting quantum interference devices (SQUIDs), suggesting a large opportunity for MEMS technology in this work. The prototype fabrication is achieved by assembling micro-objects, including a permanent micromagnet, onto a postrelease commercial MEMS accelerometer using a pick-and-place technique. With this system, we demonstrate a room-temperature MEMS magnetic gradiometer. In air, the sensor's response is linear, with a resolution of 1.1 nT cm-1, spans over 3 decades of dynamic range to 4.6 µT cm-1, and is capable of off-resonance measurements at low frequencies. In a 1 mTorr vacuum with 20 dB magnetic shielding, the sensor achieves a 100 pT cm-1 resolution at resonance. This resolution represents a 30-fold improvement compared with that of MEMS magnetometer technology and a 1000-fold improvement compared with that of MEMS gradiometer technology. The sensor is capable of a small spatial resolution with a magnetic sensing element of 0.25 mm along its sensitive axis, a >4-fold improvement compared with that of MEMS gradiometer technology. The calculated noise floor of this platform is 110 fT cm-1 Hz-1/2, and thus, these devices hold promise for both magnetocardiography (MCG) and magnetoencephalography (MEG) applications.
Project description:With the rapid development of various fields, including aerospace, industrial measurement and control, and medical monitoring, the need to quantify flow velocity measurements is increasing. It is difficult for traditional flow velocity sensors to fulfill accuracy requirements for velocity measurements due to their small ranges, susceptibility to environmental impacts, and instability. Herein, to optimize sensor performance, a flexible microelectromechanical system (MEMS) thermal flow sensor is proposed that combines the working principles of thermal loss and thermal temperature difference and utilizes a flexible cavity substrate made of a low-thermal-conductivity polyimide/SiO2 (PI/SiO2) composite porous film to broaden the measurement range and improve the sensitivity. The measurement results show that the maximum measurable flow velocity can reach 30 m/s with a resolution of 5.4 mm/s. The average sensitivities of the sensor are 59.49 mV/(m s-1) in the medium-to-low wind velocity range of 0-2 m/s and 467.31 mV/(m s-1) in the wind velocity range of 2-30 m/s. The sensor proposed in this work can enable new applications of flexible flow sensors and wearable devices.
Project description:Precise measurement of variations in the local gravitational acceleration is valuable for natural hazard forecasting, prospecting, and geophysical studies. Common issues of the present gravimetry technologies include their high cost, high mass, and large volume, which can potentially be solved by micro-electromechanical-system (MEMS) technology. However, the reported MEMS gravimeter does not have a high sensitivity and a large dynamic range comparable with those of the present commercial gravimeters, lowering its practicability and ruling out worldwide deployment. In this paper, we introduce a more practical MEMS gravimeter that has a higher sensitivity of 8 μGal/√Hz and a larger dynamic range of 8000 mGal by using an advanced suspension design and a customized optical displacement transducer. The proposed MEMS gravimeter has performed the co-site earth tides measurement with a commercial superconducting gravimeter GWR iGrav with the results showing a correlation coefficient of 0.91.
Project description:We have designed, fabricated, calibrated and tested actuators for shear characterization to assess microscale shear properties of soft substrates. Here we demonstrate characterization of dry silicone and hydrated polyethelyne glycol. Microscale tools, including atomic force microscopes and nanoindenters, often have limited functionality in hydrated environments. While electrostatic comb-drive actuators are particularly susceptible to moisture damage, through chemical vapor deposition of hexamethyldisiloxane, we increase the hydrophobicity of our electrostatic devices to a water contact angle 90 ± 3°. With this technique we determine the effective shear stiffness of both dry and hydrated samples for a range of soft substrates. Using computational and analytical models, we compare our empirically determined effective shear stiffness with existing characterization methods, rheology and nanoindentation, for samples with shear moduli ranging from 5-320 kPa. This work introduces a new approach for microscale assessment of synthetic materials that can be used on biological materials for basic and applied biomaterials research.
Project description:PurposeTo examine the relationship of self-reported television (TV) viewing time with accelerometer-derived total sedentary time and to determine whether it differs by subgroup.MethodsUsing data for adults (≥20 yr) from the 2003-2004 and 2005-2006 nationally representative US National Health and Nutrition Examination Surveys (NHANES; n=5738), linear regression models examined the associations of categories of self-reported TV viewing time (<1, 1, 2, 3, 4, and >5 h·d) with accelerometer-derived sedentary time (<100 counts per minute; h·d). Spearman ρ assessed the correlation between participants' rankings on the two measures. Analyses were stratified by gender, age, race/ethnicity, and, in the 2003-2004 NHANES cycle, by work status among working-aged adults (20-65 yr, n=2069).ResultsTV viewing time was significantly associated with sedentary time, with positive associations for all gender, age, race/ethnicity groups, and for those not working or working part-time, but not for those in full-time work. However, correlations between rankings of the measures were only "fair" overall (ρ=0.22) and were similar for all gender and racial/ethnic groups and for those of mid- and older age but not for those of younger age (20-39 yr, ρ=0.05). In the working-aged subgroup, there was also a fair correlation between the measures for those not working (ρ=0.22) but no significant correlation for those in part-time (ρ=0.14) or full-time work (ρ=0.03).ConclusionsAssociations of TV viewing time with accelerometer-derived total sedentary time were statistically significant, but correlations were of only fair magnitude, and the strength of the relationship was not consistent across all population subgroups. These findings suggest that TV viewing time has an influence on overall sedentary time at a population level; however, measurement of sedentary time in other domains is also important.