Project description:Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected.
Project description:Simultaneously regulating the crystallizing and combustion behaviors of poly(lactic acid) (PLA) will be conducive to its further development in the fields of electronic appliances, automotive and rail transit materials. To achieve this goal, a novel bifunctional additive triethylamine phenylphosphonate (TEAP) was synthesized through acid-base neutralization reaction between trimethylamine and phenylphosphonic acid. When TEAP was added into PLA, the crystallization behaviors of PLA/TEAP assessed by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) suggested that TEAP acted as a nucleating agent and plasticizer for PLA, which effectively increased the crystallization rate of PLA. However, PLA with 3 wt% TEAP showed a slower crystallization rate than that of PLA with 1 wt% TEAP due to the filler aggregation of TEAP. Thus, the crystallization rate increased first and then slightly decreased with increasing content of TEAP. Compared with the variation of the crystallization rate, the long period (L) and amorphous layer thickness (L a) resulting from SAXS showed opposite trends, while the average crystal thickness (L c) changed slightly; the reason may relate to the variation of the number of lamellae with increasing the content of TEAP. Meanwhile, the results of WAXD and Raman spectra showed the crystal structure of PLA was not affected by the addition of TEAP. The combustion behaviors of PLA and PLA/TEAP were evaluated by the limiting oxygen index (LOI), UL-94 test, cone calorimetry test (CCT) and thermal gravimetric analyses coupled to Fourier transform infrared spectroscopy (TGA-FTIR). According to the results, TEAP mainly promotes the removal of melt dripping, hence brings away heat and delays the combustion. Besides, the production of phosphorus-containing free radicals can quench hydrogen or oxygen free radicals in the fire. Thus, the fire safety of PLA is significantly improved by adding a very low content of TEAP (1-3 wt%). Only 1 wt% loading of TEAP can increase the LOI value of PLA from 19.5 vol% to 28.6 vol%, pass the UL-94 V-0 rating and have a low peak heat release rate of 404 kW m-2.
Project description:This article reports experimental data related to the research article entitled "Poly(malic acid-co-l-lactide) as a Superb Degradation Accelerator for Poly(l-lactic acid) at Physiological Conditions" (H.T. Oyama, D. Tanishima, S. Maekawa, 2016) [1]. Hydrolytic degradation of poly(l-lactic acid) (PLLA) blends with poly(aspartic acid-co-l-lactide) (PAL) and poly(malic acid-co-l-lactide) (PML) oligomers was investigated in a phosphate buffer solution at 40 °C. It was found in the differential scanning calorimetry measurements that upon hydrolysis the cold crystallization temperature (Tc ) and the melting temperature (Tm ) significantly shifted to lower temperature. Furthermore, the hydrolysis significantly promoted water sorption in both blends.
Project description:Novel super toughened bioplastics are developed through controlled reactive extrusion processing, using a very low content of modifier, truly a new discovery in the biodegradable plastics area. The super toughened polylactide (PLA) blend showing a notched impact strength of ∼1000 J/m with hinge break behavior is achieved at a designed blending ratio of PLA, poly(butylene succinate) (PBS), and poly(butylene adipate-co-terephthalate) (PBAT), using less than 0.5 phr peroxide modifier. The impact strength of the resulting blend is approximately 10 times that of the blend with the same composition without a modifier and ∼3000% more than that of pure PLA. Interfacial compatibilization among the three biodegradable plastics took place during the melt extrusion process in the presence of a controlled amount of initiator, which is confirmed by scanning electron microscopy and rheology analysis. The synergistic effect of strong interfacial adhesion among the three blending components, the decreased particle size of the most toughened component, PBAT, to ∼200 nm, and its uniform distribution in the blend morphology result in the super tough biobased material. One of the key fundamental findings through the in situ rheology study depicts that the radical reaction initiated by peroxide occurs mainly between PBS and PBAT and not with PLA. Thus, the cross-linking degree can be controlled by adjusting renewable sourced PLA contents in the ternary blend during reactive extrusion processing. The newly engineered super toughened PLA with high stiffness and high melt elasticity modulus could reasonably serve as a promising alternative to traditional petroleum plastics, where high biobased content and biodegradability are required in diverse sustainable packaging uses.
Project description:Biobased, elastomeric polymer poly(glycerol succinate-co-maleate) (PGSMA) was produced using a "green" synthesis with added cellulose nanocrystals (CNCs) to create a novel PGSMA-CNC material. PGSMA-CNC was synthesized with the aim of developing a new strategy for successfully dispersing CNCs within a poly(lactic acid) (PLA) matrix for optimal reinforcement of tensile strength and modulus while having the added benefit of the proven toughness enhancements of PLA/PGSMA blends. Optical microscopy and fractionation in tetrahydrofuran showed that CNCs agglomerated during PGSMA-CNC synthesis and remained in agglomerates during PLA/PGSMA-CNC reactive blending. Fourier transform infrared, differential scanning calorimetry, and dynamic mechanical analyses also showed that PGSMA-CNC inhibited the formation of PGSMA crosslinks and PLA-g-PGSMA during reactive blending. These two effects resulted in loss of impact strength and only a 4% increase in tensile modulus over PLA/PGSMA at the highest CNC content. Further work in preventing CNC aggregation could help improve mechanical properties of the final blend.
Project description:Herein we demonstrate the formation of stereocomplex prodrugs of oligo(l-lactic acid) n-gemcitabine (o(LLA) n-GEM) and oligo(d-lactic acid) n-gemcitabine (o(DLA) n-GEM) for stable incorporation in poly(ethylene glycol)- block-poly(d,l-lactic acid) (PEG- b-PLA) micelles. O(LLA) n or o(DLA) n was attached at the amino group (4-( N)) of GEM via an amide linkage. When n = 10, a 1:1 mixture of o(LLA)10-GEM and o(DLA)10-GEM (o(L+DLA)10-GEM) was able to form a stereocomplex with a distinctive crystalline pattern. Degradation of o(L+DLA)10-GEM was driven by both backbiting conversion and esterase contribution, generating primarily o(L+DLA)1-GEM and GEM. O(L+DLA)10-GEM stably loaded in PEG- b-PLA micelles in the size range of 140-200 nm with an unexpected elongated morphology. The resulting micelles showed improved physical stability in aqueous media and inhibited backbiting conversion of o(L+DLA)10-GEM within micelles. Release of o(L+DLA)10-GEM from micelles was relatively slow, with a t1/2 at ca. 60 h. Furthermore, weekly administration of o(L+DLA)10-GEM micelles i.v. displayed potent antitumor activity in an A549 human non-small-cell lung carcinoma xenograft model. Thus, stereocomplexation of isotactic o(LLA) n and o(DLA) n acts as a potential prodrug strategy for improved stability and sustained drug release in PEG- b-PLA micelles.
Project description:Bone substitute materials have witnessed tremendous development over the past decades and autogenous bone may still be considered the gold standard for many clinicians and clinical approaches in order to rebuild and restore bone defects. However, a plethora of novel xenogenic and synthetic bone substitute materials have been introduced in recent years in the field of bone regeneration. As the development of bone is actually a calcification process within a collagen fiber arrangement, the use of scaffolds in the formation of fibers may offer some advantages, along with additional handling characteristics. This review focuses on material characteristics and degradation behavior of electrospun biodegradable polyester scaffolds. Furthermore, we concentrated on the preclinical in vivo performance with regard to bone regeneration in preclinical studies. The major findings are as follows: Scaffold composition and architecture determine its biological behavior and degradation characteristics; The incorporation of inorganic substances and/or organic substances within composite scaffolds enhances new bone formation; L-poly(lactic acid) and poly(lactic-co-glycolic acid) composite scaffolds, especially when combined with basic substances like hydroxyapatite, tricalcium phosphate or demineralized bone powder, seem not to induce inflammatory tissue reactions in vivo.
Project description:This article reports a novel fabrication of branched cum cross-linked poly(lactic acid) (PLA) with nanosilk fibroin with graft chain topology by reactive extrusion process. It could be possible by the addition of a small amount of radical initiator (dicumyl peroxide (DCP)). Grafting of silk nanocrystals (SNCs) on PLA macromolecules that provides remarkable improvement in the rheological and thermal properties of the latter are confirmed by 1H NMR and Fourier transform infrared investigation. Significant improvement is observed in zero shear viscosities, and the crossover point shifts to lower frequencies as compared to the branched and cross-linked PLA system. Along with SNC grafting, the crystallization process is also enhanced and stable crystals appeared during cooling, which results in a single melting peak. The rate of crystallization of PLA has been improved although the percentage crystallinity reduces with DCP content, as higher grafting and cross-linking restricts the chain segmental motion, which is critical for crystallization process. Furthermore, SNC grafting increases the reprocessability performance of PLA and provides higher rheological properties as compared to the branched and cross-linked PLA at all reprocessing cycles.
Project description:We observed the crystallization process in poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) blends using in situ simultaneous small- and wide-angle X-ray scattering measurements with a high-speed temperature control cell. In situ X-ray scattering measurements revealed that density fluctuations larger than the long spacing periods grew during crystallization above 130 °C. In particular, the time evolution of the density fluctuations has a strong dependence on the crystallization temperature. The density fluctuations will promote the crystal nucleation and growth processes of the stereocomplex and increase with increasing crystallization temperature, which is strongly correlated with the complexation of PLLA and PDLA chains. On the other hand, below 120 °C, the kinetics of stereocomplex formation might be hindered by the decreased mobility, and no density fluctuations were observed in the case of homo crystal growth of PLLA or PDLA.
Project description:To protect crops as well as human and animal health, the development of novel repellents based on biopolymers is critical for a growing world population. Here, novel aphid-repellent electrospun mats containing epoxidized ionic liquids (ILs) covalently bonded to the carboxyl or hydroxyl groups of poly(lactic acid) (PLA) were designed to produce nonwoven mats. First, di-, tri-, and tetra-epoxidized imidazolium ILs were synthesized and incorporated in different weight fractions (3, 5, and 10 wt %) into the PLA solution. Then, the effect of ILs' microstructure, thermal properties, mechanical performance, and hydrophobic behavior were investigated. It was found that the incorporation of ILs resulted in a reduction of the fiber diameters while the mechanical properties of the mats, i.e., the three-dimensional fibrous porous structure, were maintained. Finally, the effect of these three ILs against the pea aphid Acyrthosiphon pisum (Harris) was evaluated for the first time, showing an attractive effect for the diepoxidized IL and a repellent effect for the tri- and tetra-epoxidized ILs. By exploiting the chemical nature of ILs, an environmentally friendly strategy can be developed to limit the need for chemical pesticides and petroleum-based polymers.