Unknown

Dataset Information

0

Chromosome-level genome assembly of Oncomelania hupensis: the intermediate snail host of Schistosoma japonicum.


ABSTRACT:

Background

Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China, the Philippines and Indonesia. Oncomelania hupensis (Gastropoda: Pomatiopsidae) is the unique intermediate host of S. japonicum. A complete genome sequence of O. hupensis will enable the fundamental understanding of snail biology as well as its co-evolution with the S. japonicum parasite. Assembling a high-quality reference genome of O. hupehensis will provide data for further research on the snail biology and controlling the spread of S. japonicum.

Methods

The draft genome was de novo assembly using the long-read sequencing technology (PacBio Sequel II) and corrected with Illumina sequencing data. Then, using Hi-C sequencing data, the genome was assembled at the chromosomal level. CAFE was used to do analysis of contraction and expansion of the gene family and CodeML module in PAML was used for positive selection analysis in protein coding sequences.

Results

A total length of 1.46 Gb high-quality O. hupensis genome with 17 unique full-length chromosomes (2n = 34) of the individual including a contig N50 of 1.35 Mb and a scaffold N50 of 75.08 Mb. Additionally, 95.03% of these contig sequences were anchored in 17 chromosomes. After scanning the assembled genome, a total of 30,604 protein-coding genes were predicted. Among them, 86.67% were functionally annotated. Further phylogenetic analysis revealed that O. hupensis was separated from a common ancestor of Pomacea canaliculata and Bellamya purificata approximately 170 million years ago. Comparing the genome of O. hupensis with its most recent common ancestor, it showed 266 significantly expanded and 58 significantly contracted gene families (P < 0.05). Functional enrichment of the expanded gene families indicated that they were mainly involved with intracellular, DNA-mediated transposition, DNA integration and transposase activity.

Conclusions

Integrated use of multiple sequencing technologies, we have successfully constructed the genome at the chromosomal-level of O. hupensis. These data will not only provide the compressive genomic information, but also benefit future work on population genetics of this snail as well as evolutional studies between S. japonicum and the snail host.

SUBMITTER: Liu Q 

PROVIDER: S-EPMC10898136 | biostudies-literature | 2024 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chromosome-level genome assembly of Oncomelania hupensis: the intermediate snail host of Schistosoma japonicum.

Liu Qin Q   Duan Lei L   Guo Yun-Hai YH   Yang Li-Min LM   Zhang Yi Y   Li Shi-Zhu SZ   Lv Shan S   Hu Wei W   Chen Nan-Sheng NS   Zhou Xiao-Nong XN  

Infectious diseases of poverty 20240227 1


<h4>Background</h4>Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China, the Philippines and Indonesia. Oncomelania hupensis (Gastropoda: Pomatiopsidae) is the unique intermediate host of S. japonicum. A complete genome sequence of O. hupensis will enable the fundamental understanding of snail biology as well as its co-evolution with the S. japonicum parasite. Assembling a high-quality reference genome of O. hupehensi  ...[more]

Similar Datasets

| S-EPMC4521948 | biostudies-literature
| S-EPMC3382821 | biostudies-literature
| S-EPMC11229218 | biostudies-literature
| S-EPMC11556072 | biostudies-literature
| S-EPMC2929049 | biostudies-literature
| S-EPMC2830461 | biostudies-literature
| S-EPMC8483005 | biostudies-literature
| S-EPMC10956175 | biostudies-literature
| S-EPMC4047743 | biostudies-literature
| S-EPMC6963648 | biostudies-literature