Project description:Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.
Project description:Abnormalities in temporal and frontal cortical volume, white matter tract integrity, and hemispheric asymmetry have been implicated in schizophrenia-spectrum disorders. Schizotypal personality disorder can provide insight into vulnerability and protective factors in these disorders without the confounds associated with chronic psychosis. However, multimodal imaging and asymmetry studies in SPD are sparse. Thirty-seven individuals with SPD and 29 healthy controls (HC) received clinical interviews and 3T magnetic resonance T1-weighted and diffusion tensor imaging scans. Mixed ANOVAs were performed on gray matter volumes of the lateral temporal regions involved in auditory and language processing and dorsolateral prefrontal cortex involved in executive functioning, as well as fractional anisotropy (FA) of prominent white matter tracts that connect frontal and temporal lobes. In the temporal lobe regions, there were no group differences in volume, but SPD had reduced right>left middle temporal gyrus volume asymmetry compared to HC and lacked the right>left asymmetry in the inferior temporal gyrus volume seen in HC. In the frontal regions, there were no differences between groups on volume or asymmetry. In the white matter tracts, SPD had reduced FA in the left sagittal stratum and superior longitudinal fasciculus, and increased right>left asymmetry in sagittal stratum FA compared to HC. In the SPD group, lower left superior longitudinal fasciculus FA was associated with greater severity of disorganization symptoms. Findings suggest that abnormities in structure and asymmetry of temporal regions and frontotemporal white matter tract integrity are implicated in SPD pathology.
Project description:We aimed to assess associations between clinical, imaging, pathologic, and genetic features and frontal lobe asymmetry in behavioral variant frontotemporal dementia (bvFTD). Volumes of the left and right dorsolateral, medial, and orbital frontal lobes were measured in 80 bvFTD subjects and subjects were classified into 3 groups according to the degree of asymmetry (asymmetric left, asymmetric right, symmetric) using cluster analysis. The majority of subjects were symmetric (65%), with 20% asymmetric left and 15% asymmetric right. There were no clinical differences across groups, although there was a trend for greater behavioral dyscontrol in right asymmetric compared with left asymmetric subjects. More widespread atrophy involving the parietal lobe was observed in the symmetric group. Genetic features differed across groups with symmetric frontal lobes associated with C9ORF72 and tau mutations, while asymmetric frontal lobes were associated with progranulin mutations. These findings therefore suggest that neuroanatomical patterns of frontal lobe atrophy in bvFTD are influenced by specific gene mutations.
Project description:Background: The amygdala plays a key role in emotional hyperreactivity in response to social threat in patients with social anxiety disorder (SAD). We investigated resting-state functional connectivity (rs-FCN) of the left and right amygdala with various brain regions and functional lateralization in patients with SAD. Methods: A total of 36 patients with SAD and 42 matched healthy controls underwent functional magnetic resonance imaging (fMRI) at rest. Using the left and right amygdala as seed regions, we compared the strength of the rs-FCN in the patient and control groups. Furthermore, we investigated group differences in the hemispheric asymmetry of the functional connectivity maps of the left and right amygdala. Results: Compared with healthy controls, the rs-FCN between the left amygdala and the dorsolateral prefrontal cortex was reduced in patients with SAD, whereas left amygdala connectivity with the fusiform gyrus, anterior insula, supramarginal gyrus, and precuneus was increased or positively deflected in the patient group. Additionally, the strength rs-FCN between the left amygdala and anterior insula was positively associated with the severity of the fear of negative evaluation in patients with SAD (r = 0.338, p = 0.044). The rs-FCN between the right amygdala and medial frontal gyrus was decreased in patients with SAD compared with healthy controls, whereas connectivity with the parahippocampal gyrus was greater in the patient group than in the control group. The hemispheric asymmetry patterns in the anterior insula, intraparietal sulcus (IPS), and inferior frontal gyrus of the patient group were opposite those of the control group, and functional lateralization of the connectivity between the amygdala and the IPS was associated with the severity of social anxiety symptoms (r = 0.365, p = 0.037). Conclusion: Our findings suggest that in addition to impaired fronto-amygdala communication, the functional lateralization of amygdala function plays a central role in the pathophysiology of SAD.
Project description:The development of social-cognitive abilities in infancy is subject to an intricate interaction between maturation of neural systems and environmental input. We investigated the role of infants' attachment relationship quality in shaping infants' neural responses to observed social interactions. One-hundred thirty 10-month-old infants participated in an EEG session while they watched animations involving a distressing separation event that ended with either comforting or ignoring behavior. Frontal asymmetry (FA) in the alpha range - which is indicative of approach-withdrawal tendencies - was measured with EEG. Attachment quality was assessed using the Strange Situation procedure at 12 months. Overall, infants with disorganized attachment showed a lack of right-sided - withdrawal related - FA compared to secure and insecure infants. Furthermore, only avoidant infants exhibited reduced right-sided FA responses following the separation. Contrary to our expectations, the type of response (comforting vs. ignoring) did not elicit differences in FA patterns, and attachment quality did not moderate the effects of the type of response on frontal asymmetry. Implications for research on attachment-related biases in social information processing and on the neural underpinnings of prosocial behaviors are discussed.
Project description:Biological measurements that distinguish individuals with autism from typically developing individuals and those with other developmental and neuropsychiatric disorders must demonstrate very high performance to have clinical value as potential imaging biomarkers. We hypothesized that further study of white matter microstructure (WMM) in the superior temporal gyrus (STG) and temporal stem (TS), two brain regions in the temporal lobe containing circuitry central to language, emotion, and social cognition, would identify a useful combination of classification features and further understand autism neuropathology.WMM measurements from the STG and TS were examined from 30 high-functioning males satisfying full criteria for idiopathic autism aged 7-28 years and 30 matched controls and a replication sample of 12 males with idiopathic autism and 7 matched controls who participated in a previous case-control diffusion tensor imaging (DTI) study. Language functioning, adaptive functioning, and psychotropic medication usage were also examined.In the STG, we find reversed hemispheric asymmetry of two separable measures of directional diffusion coherence, tensor skewness, and fractional anisotropy. In autism, tensor skewness is greater on the right and fractional anisotropy is decreased on the left. We also find increased diffusion parallel to white matter fibers bilaterally. In the right not left TS, we find increased omnidirectional, parallel, and perpendicular diffusion. These six multivariate measurements possess very high ability to discriminate individuals with autism from individuals without autism with 94% sensitivity, 90% specificity, and 92% accuracy in our original and replication samples. We also report a near-significant association between the classifier and a quantitative trait index of autism and significant correlations between two classifier components and measures of language, IQ, and adaptive functioning in autism.
Project description:It is widely reported that expressive writing can improve mental and physical health. However, to date, the neural correlates of expressive writing have not been reported. The current study examined the neural electrical correlates of expressive writing in a reappraisal approach. Three groups of participants were required to give a public speech. Before speaking, the reappraisal writing group was asked to write about the current stressful task in a reappraisal manner. The irrelevant writing group was asked to write about their weekly plan, and the non-writing group did not write anything. It was found that following the experimental writing manipulation, both reappraisal and irrelevant writing conditions decreased self-reported anxiety levels. But when re-exposed to the stressful situation, participants in the irrelevant writing group showed increased anxiety levels, while anxiety levels remained lower in the reappraisal group. During the experimental writing manipulation period, participants in the reappraisal group had lower frontal alpha asymmetry scores than those in the irrelevant writing group. However, following re-exposure to stress, participants in the reappraisal group showed higher frontal alpha asymmetry scores than those in the irrelevant writing group. Self-reported anxiety and frontal alpha asymmetry of the non-writing condition did not change significantly across these different stages. It is noteworthy that expressive writing in a reappraisal style seems not to be a fast-acting treatment but may instead take effect in the long run.
Project description:Frontal alpha asymmetry (FAA) is widely examined in EEG research, yet a procedural consensus on its assessment is lacking. In this study, we tested a latent factorial approach to measure FAA. We assessed resting-state FAA at broad, low, and high alpha bands (8-13; 8-10.5; and 11-13 Hz) using mastoids as reference electrodes and Current Source Density (CSD) transformation (N = 139 non-clinical participants). From mastoid-referenced data, we extracted a frontal alpha asymmetry factor (FAAf) and a parietal factor (PAAf) subjecting all asymmetry indices to a varimax-rotated, principal component analysis. We explored split-half reliability and discriminant validity of the mastoid factors and the mastoid and CSD raw asymmetry indices (F3/4, F7/8, P3/4, and P7/8). Both factor and raw scores reached an excellent split-half reliability (>.99), but only the FAAf reached the maximum discriminant validity from parietal scores. Next, we explored the correlations of latent factor and raw FAA scores with symptoms of depression, anxiety, and personality traits to determine which associations were driven by FAA after variance from parietal activity was removed. After correcting for false discovery rate, only FAAf at the low alpha band was negatively associated with depression symptoms (a latent CES-D factor) and significantly diverged from PAAf's association with depression symptoms. With respect to personality traits, only CSD-transformed F7/8 was positively correlated with Conscientiousness and significantly diverged from the correlations between Conscientiousness and P3/4 and P7/8. Overall, the latent factor approach shows promise for isolating functionally distinct resting-state EEG signatures, although further research is needed to examine construct validity.
Project description:The goal of the present study was to examine whether frontal alpha asymmetry and delta-beta cross-frequency correlation during resting state, anticipation, and recovery are electroencephalographic (EEG) measures of social anxiety. For the first time, we jointly examined frontal alpha asymmetry and delta-beta correlation during resting state and during a social performance task in high (HSA) versus low (LSA) socially anxious females. Participants performed a social performance task in which they first watched and evaluated a video of a peer, and then prepared their own speech. They believed that their speech would be videotaped and evaluated by a peer. We found that HSA participants showed significant negative delta-beta correlation as compared to LSA participants during both anticipation of and recovery from the stressful social situation. This negative delta-beta correlation might reflect increased activity in subcortical brain regions and decreased activity in cortical brain regions. As we hypothesized, no group differences in delta-beta correlation were found during the resting state. This could indicate that a certain level of stress is needed to find EEG measures of social anxiety. As for frontal alpha asymmetry, we did not find any group differences. The present frontal alpha asymmetry results are discussed in relation to the evident inconsistencies in the frontal alpha asymmetry literature. Together, our results suggest that delta-beta correlation is a putative EEG measure of social anxiety.
Project description:BackgroundA previous survey of the literature of fMRI brain activation for two risk factors, impulsivity and craving, for addiction were lateralized to the right and left hemispheres respectively. Most articles reported these findings without consideration of how lateral asymmetries might be relevant to understanding the underlying factors leading to addiction.ObjectiveThe current survey is intended to extend these observations by demonstrating hemispheric asymmetry of development due to pre-natal or adolescent/adult exposure to drugs of abuse.MethodArticles that reported either pre-natal or adolescent/adult exposure to drugs of abuse were collected and the hemisphere of the affected structures was tabulated to determine if, and which, drugs affected more structures in one hemisphere or the other or both together.ResultsSome drugs, notably cocaine and alcohol, differentially affected left or right hemisphere structures which significantly differed depending on whether individuals were exposed prenatally or as an adolescent/adult. Cocaine tended to affect more left hemisphere structures when exposed prenatally and significantly affected more in the right when exposed as adults. Alcohol had the reverse pattern. The difference in patterns of effect between pre-natal or adult exposure was significant for both.ConclusionThe results in this survey demonstrate that some drugs of abuse appear to have a right/left differential effect on structures of the brain. Further investigation into the reasons for this asymmetry may provide new insights into underlying factors of drug-seeking and addiction.