Project description:Salinity tolerance is a multifaceted trait attributed to various mechanisms. Wild barley is highly specialized to grow under severe environmental conditions of Tibet and is well-known for its diverse germplasm with high tolerance to abiotic stresses. The present study focused on determining the profile of the expression of isoforms of the HvNHX gene in 36 wild and two cultivated barley under salt stress. Our findings revealed that in leaves and roots, expression of HvNHX1 and HvNHX3 in XZ16 and CM72 was upregulated at all times as compared with sensitive ones. The HvNHX2 and HvNHX4 isoforms were also induced by salt stress, although not to the same extent as HvNHX1 and HvNHX3. Gene expression analysis revealed that HvNHX1 and HvNHX3 are the candidate genes that could have the function of regulators of ions by sequestration of Na+ in the vacuole. HvNHX1 and HvNHX3 showed a wide range of sequence variations in an amplicon, identified via single-nucleotide polymorphisms (SNPs). Evaluation of the sequencing data of 38 barley genotypes, including Tibetan wild and cultivated varieties, showed polymorphisms, including SNPs, and small insertion and deletion (INDEL) sites in the targeted genes HvNHX1 and HvNHX3. Comprehensive analysis of the results revealed that Tibetan wild barley has distinctive alleles of HvNHX1 and HvNHX3 which confer tolerance to salinity. Furthermore, less sodium accumulation was observed in the root of XZ16 than the other genotypes as visualized by CoroNa-Green, a sodium-specific fluorophore. XZ16 is the tolerant genotype, showing least reduction of root and leaf dry weight under moderate (150 mM) and severe (300 mM) NaCl stress. Evaluation of genetic variation and identification of salt tolerance mechanism in wild barley could be promoting approaches to unravel the novel alleles involved in salinity tolerance.
Project description:Domestication has resulted in reduced salt tolerance in tomato. To identify the genetic components causing this deficiency, we performed a genome-wide association study (GWAS) for root Na+ /K+ ratio in a population consisting of 369 tomato accessions with large natural variations. The most significant variations associated with root Na+ /K+ ratio were identified within the gene SlHAK20 encoding a member of the clade IV HAK/KUP/KT transporters. We further found that SlHAK20 transports Na+ and K+ and regulates Na+ and K+ homeostasis under salt stress conditions. A variation in the coding sequence of SlHAK20 was found to be the causative variant associated with Na+ /K+ ratio and confer salt tolerance in tomato. Knockout mutations in tomato SlHAK20 and the rice homologous genes resulted in hypersensitivity to salt stress. Together, our study uncovered a previously unknown molecular mechanism of salt tolerance responsible for the deficiency in salt tolerance in cultivated tomato varieties. Our findings provide critical information for molecular breeding to improve salt tolerance in tomato and other crops.
Project description:Salinity is a major constraint for plant growth in world areas exposed to salinization. Sorghum bicolor (L.) Moench is a species that has received attention for biomass production in saline areas thanks to drought and salinity tolerance. To improve the knowledge in the mechanisms of salt tolerance and sodium allocation to plant organs, a pot experiment was set up. The experimental design combined three levels of soil salinity (0, 3, and 6 dS m-1) with three levels of water salinity (0, 2-4, and 4-8 dS m-1) and two water regimes: no salt leaching (No SL) and salt leaching (SL). This latter regime was carried out with the same three water salinity levels and resulted in average +81% water supply. High soil salinity associated with high water salinity (HSS-HWS) affected plant growth and final dry weight (DW) to a greater extent in No SL (-87% DW) than SL (-42% DW). Additionally, HSS-HWS determined a stronger decrease in leaf water potential and relative water content under No SL than SL. HSS-HWS with No SL resulted in a higher Na bioaccumulation from soil to plant and in translocation from roots to stem and, finally, leaves, which are the most sensitive organ. Higher water availability (SL), although determining higher salt input when associated with HWS, limited Na bioaccumulation, prevented Na translocation to leaves, and enhanced selective absorption of Ca vs. Na. At plant level, higher Na accumulation was associated with lower Ca and Mg accumulation, especially in No SL. This indicates altered ion homeostasis and cation unbalance.
Project description:Alkaline soil has a high pH due to carbonate salts and usually causes more detrimental effects on crop growth than saline soil. Sodium hydrogen exchangers (NHXs) are pivotal regulators of cellular Na+/K+ and pH homeostasis, which is essential for salt tolerance; however, their role in alkaline salt tolerance is largely unknown. Therefore, in this study, we investigated the function of a soybean NHX gene, GmNHX6, in plant response to alkaline salt stress. GmNHX6 encodes a Golgi-localized sodium/hydrogen exchanger, and its transcript abundance is more upregulated in alkaline salt tolerant soybean variety in response to NaHCO3 stress. Ectopic expression of GmNHX6 in Arabidopsis enhanced alkaline salt tolerance by maintaining high K+ content and low Na+/K+ ratio. Overexpression of GmNHX6 also improved soybean tolerance to alkaline salt stress. A single nucleotide polymorphism in the promoter region of NHX6 is associated with the alkaline salt tolerance in soybean germplasm. A superior promoter of GmNHX6 was isolated from an alkaline salt tolerant soybean variety, which showed stronger activity than the promoter from an alkaline salt sensitive soybean variety in response to alkali stress, by luciferase transient expression assays. Our results suggested soybean NHX6 gene plays an important role in plant tolerance to alkaline salt stress.
Project description:Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3) has the potential to improve soybean yields in salinized conditions. Here we evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions. Three sets of near isogenic lines (NILs), with genetic similarity of 95.6-99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties 85-140 (salt-sensitive, S) and Tiefeng 8 (salt-tolerant, T) by using marker-assisted selection. Each NIL-T; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigor under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl- in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl- than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl- accumulation in soybean, and contributes to improved soybean yield through maintaining a higher seed weight under saline stress.
Project description:BackgroundSalinity is a worldwide factor limiting the agricultural production. Cotton is an important cash crop; however, its yield and product quality are negatively affected by soil salinity. Use of nanomaterials such as cerium oxide nanoparticles (nanoceria) to improve plant tolerance to stress conditions, e.g. salinity, is an emerged approach in agricultural production. Nevertheless, to date, our knowledge about the role of nanoceria in cotton salt response and the behind mechanisms is still rare.ResultsWe found that PNC (poly acrylic acid coated nanoceria) helped to improve cotton tolerance to salinity, showing better phenotypic performance, higher chlorophyll content (up to 68% increase) and biomass (up to 38% increase), and better photosynthetic performance such as carbon assimilation rate (up to 144% increase) in PNC treated cotton plants than the NNP (non-nanoparticle control) group. Under salinity stress, in consistent to the results of the enhanced activities of antioxidant enzymes, PNC treated cotton plants showed significant lower MDA (malondialdehyde, up to 44% decrease) content and reactive oxygen species (ROS) level such as hydrogen peroxide (H2O2, up to 79% decrease) than the NNP control group, both in the first and second true leaves. Further experiments showed that under salinity stress, PNC treated cotton plants had significant higher cytosolic K+ (up to 84% increase) and lower cytosolic Na+ (up to 77% decrease) fluorescent intensity in both the first and second true leaves than the NNP control group. This is further confirmed by the leaf ion content analysis, showed that PNC treated cotton plants maintained significant higher leaf K+ (up to 84% increase) and lower leaf Na+ content (up to 63% decrease), and thus the higher K+/Na+ ratio than the NNP control plants under salinity stress. Whereas no significant increase of mesophyll cell vacuolar Na+ intensity was observed in PNC treated plants than the NNP control under salinity stress, suggesting that the enhanced leaf K+ retention and leaf Na+ exclusion, but not leaf vacuolar Na+ sequestration are the main mechanisms behind PNC improved cotton salt tolerance. qPCR results showed that under salinity stress, the modulation of HKT1 but not SOS1 refers more to the PNC improved cotton leaf Na+ exclusion than the NNP control.ConclusionsPNC enhanced leaf K+ retention and Na+ exclusion, but not vacuolar Na+ sequestration to enable better maintained cytosolic K+/Na+ homeostasis and thus to improve cotton salt tolerance. Our results add more knowledge for better understanding the complexity of plant-nanoceria interaction in terms of nano-enabled plant stress tolerance.
Project description:Maize is moderately sensitive to salt stress; therefore, soil salinity is a serious threat to its production worldwide. Here, excellent salt-tolerant maize inbred line TL1317 and extremely salt-sensitive maize inbred line SL1303 were screened to understand the maize response to salt stress and its tolerance mechanisms. Relative water content, membrane stability index, stomatal conductance, chlorophyll content, maximum photochemical efficiency, photochemical efficiency, shoot and root fresh/dry weight, and proline and water soluble sugar content analyses were used to identify that the physiological effects of osmotic stress of salt stress were obvious and manifested at about 3 days after salt stress in maize. Moreover, the ion concentration of two maize inbred lines revealed that the salt-tolerant maize inbred line could maintain low Na+ concentration by accumulating Na+ in old leaves and gradually shedding them to exclude excessive Na+. Furthermore, the K+ uptake and retention abilities of roots were important in maintaining K+ homeostasis for salt tolerance in maize. RNA-seq and qPCR results revealed some Na+/H+ antiporter genes and Ca2+ transport genes were up-regulated faster and higher in TL1317 than those in SL1303. Some K+ transport genes were down-regulated in SL1303 but up-regulated in TL1317. RNA-seq results, along with the phenotype and physiological results, suggested that the salt-tolerant maize inbred line TL1317 possesses more rapidly and effectively responses to remove toxic Na+ ions and maintain K+ under salt stress than the salt-sensitive maize inbred line SL1303. This response should facilitate cell homoeostasis under salt stress and result in salt tolerance in TL1317.
Project description:BackgroundChitosan (CTS), a natural polysaccharide, exhibits multiple functions of stress adaptation regulation in plants. However, effects and mechanism of CTS on alleviating salt stress damage are still not fully understood. Objectives of this study were to investigate the function of CTS on improving salt tolerance associated with metabolic balance, polyamine (PAs) accumulation, and Na+ transport in creeping bentgrass (Agrostis stolonifera).ResultsCTS pretreatment significantly alleviated declines in relative water content, photosynthesis, photochemical efficiency, and water use efficiency in leaves under salt stress. Exogenous CTS increased endogenous PAs accumulation, antioxidant enzyme (SOD, POD, and CAT) activities, and sucrose accumulation and metabolism through the activation of sucrose synthase and pyruvate kinase activities, and inhibition of invertase activity. The CTS also improved total amino acids, glutamic acid, and γ-aminobutyric acid (GABA) accumulation. In addition, CTS-pretreated plants exhibited significantly higher Na+ content in roots and lower Na+ accumulation in leaves then untreated plants in response to salt stress. However, CTS had no significant effects on K+/Na+ ratio. Importantly, CTS enhanced salt overly sensitive (SOS) pathways and also up-regulated the expression of AsHKT1 and genes (AsNHX4, AsNHX5, and AsNHX6) encoding Na+/H+ exchangers under salt stress.ConclusionsThe application of CTS increased antioxidant enzyme activities, thereby reducing oxidative damage to roots and leaves. CTS-induced increases in sucrose and GABA accumulation and metabolism played important roles in osmotic adjustment and energy metabolism during salt stress. The CTS also enhanced SOS pathway associated with Na+ excretion from cytosol into rhizosphere, increased AsHKT1 expression inhibiting Na+ transport to the photosynthetic tissues, and also up-regulated the expression of AsNHX4, AsNHX5, and AsNHX6 promoting the capacity of Na+ compartmentalization in roots and leaves under salt stress. In addition, CTS-induced PAs accumulation could be an important regulatory mechanism contributing to enhanced salt tolerance. These findings reveal new functions of CTS on regulating Na+ transport, enhancing sugars and amino acids metabolism for osmotic adjustment and energy supply, and increasing PAs accumulation when creeping bentgrass responds to salt stress.
Project description:Improving crop salt tolerance is an adaptive measure to climate change for meeting future food demands. Previous studies have reported that glycine betaine (GB) plays critical roles as an osmolyte in enhancing plant salt resistance. However, the mechanism underlying the GB regulating plant Na+ homeostasis during response to salinity is poorly understood. In this study, hydroponically cultured maize with 125 mM NaCl for inducing salinity stress was treated with 100 μM GB. We found that treatment with GB improved the growth of maize plants under non-stressed (NS) and salinity-stressed (SS) conditions. Treatment with GB significantly maintained the properties of chlorophyll fluorescence, including Fv/Fm, ΦPSII, and ΦNPQ, and increased the activity of the antioxidant enzymes for mitigating salt-induced growth inhibition. Moreover, GB decreased the Na+/K+ ratio primarily by reducing the accumulation of Na+ in plants. The results of NMT tests further confirmed that GB increased Na+ efflux from roots under SS condition, and fluorescence imaging of cellular Na+ suggested that GB reduced the cellular allocation of Na+. GB additionally increased Na+ efflux in leaf protoplasts under SS condition, and treatment with sodium orthovanadate, a plasma membrane (PM) H+-ATPase inhibitor, significantly alleviated the positive effects of GB on Na+ efflux under salt stress. GB significantly improved the vacuolar activity of NHX but had no significant effects on the activity of V type H+-ATPases. In addition, GB significantly upregulated the expression of the PM H+-ATPase genes, ZmMHA2 and ZmMHA4, and the Na+/H+ antiporter gene, ZmNHX1. While, the V type H+-ATPases gene, ZmVP1, was not significantly regulated by GB. Altogether these results indicate that GB regulates cellular Na+ homeostasis by enhancing PM H+-ATPases gene transcription and protein activities to improve maize salt tolerance. This study provided an extended understanding of the functions of GB in plant responses to salinity, which can help the development of supportive measures using GB for obtaining high maize yield in saline conditions.
Project description:The mechanism of phosphate (Pi)-mediated salt tolerance in maize is poorly understood. In this study, the effects of Pi (H2PO4-) on the salt tolerance of two contrasting genotypes was investigated in a pot experiment. We discovered that the application of 3 mM Pi could alleviate salt injury caused by 200 mM NaCl. High amounts of compatible solutes and low amounts of reactive oxygen species (ROS) were also observed under Pi application. Consistent with the increased tolerance, the total number of roots and the growth of shoots increased to relieve salt stress. This phenomenon could be associated with the observed increased expression of nitrate transporters. Furthermore, the seedlings presented a negative relationship between sodium (Na+) and Pi (low Na+ content and high Pi content), which is related to the genes ZmNHX1, ZmPHT1;8, and ZmPHT1;9, indicating that the exclusion of Na+ was promoted by high Pi uptake. However, high Na+ and low potassium (K+) efflux were detected in the roots, and these were positively correlated with two K+ transporters. These observations indicate that Na+ exclusion was directly induced by high K+ retention rather than Pi absorption. We conclude that maize salt tolerance increased in response to Pi application by promoting Na+ exclusion.