Project description:BackgroundThe paradigm shift from crystalloid to plasma resuscitation of traumatic hemorrhagic shock has improved patient outcomes due in part to plasma-mediated reversal of catecholamine and inflammation-induced endothelial injury, decreasing vascular permeability and attenuating organ injury. Since sepsis induces a similar endothelial injury as seen in hemorrhage, we hypothesized that plasma resuscitation would increase 48-h survival in a rat sepsis model.MethodsAdult male Sprague-Dawley rats (375-425 g) were subjected to 35% cecal ligation and puncture (CLP) (t = 0 h). Twenty-two hours post-CLP and prior to resuscitation (t = 22 h), animals were randomized to resuscitation with normal saline (NS, 10 cc/kg/h) or pooled rat fresh frozen plasma (FFP, 3.33 cc/kg/h). Resuscitation under general anesthesia proceeded for the next 6 h (t = 22 h to t = 28 h); lactate was checked every 2 h, and fluid volumes were titrated based on lactate clearance. Blood samples were obtained before (t = 22 h) and after resuscitation (t = 28 h), and at death or study conclusion. Lung specimens were obtained for calculation of wet-to-dry weight ratio. Fisher exact test was used to analyze the primary outcome of 48-h survival. ANOVA with repeated measures was used to analyze the effect of FFP versus NS resuscitation on blood gas, electrolytes, blood urea nitrogen (BUN), creatinine, interleukin (IL)-6, IL-10, catecholamines, and syndecan-1 (marker for endothelial injury). A two-tailed alpha level of <0.05 was used for all statistical tests.ResultsThirty-three animals were studied: 14 FFP, 14 NS, and 5 sham. Post-CLP but preresuscitation (t = 22 h) variables between FFP and NS animals were similar and significantly deranged compared with sham animals. FFP significantly increased 48-h survival compared to NS (n = 8 [57%] vs n = 2 [14%]), attenuated the post-resuscitation (t = 28 h) levels of epinephrine (mean 2.2 vs 7.0 ng/mL), norepinephrine, (3.8 vs 8.9 ng/mL), IL-6 (3.8 vs 18.7 ng/mL), and syndecan-1 (21.8 vs 31.0 ng/mL) (all P < 0.05), improved the post-resuscitation PO2 to FiO2 ratio (353 vs 151), and reduced the pulmonary wet-to-dry weight ratio (5.28 vs 5.94) (all P < 0.05).ConclusionCompared to crystalloid, plasma resuscitation increased 48-h survival in a rat sepsis model, improved pulmonary function and decreased pulmonary edema, and attenuated markers for inflammation, endothelial injury, and catecholamines.
Project description:We attempted to investigate whether blood lactate is a useful biomarker for sepsis in a rat cecal ligation and puncture (CLP) model. Male Sprague-Dawley rats underwent approximately 75% cecum ligation and two punctures to induce high-grade sepsis. A lactate of 1.64 mmol/L (Youden score of 0.722) was selected as the best cutoff value to predict the onset of sepsis after CLP exposure; 46 of 50 rats who survived 24 hours after the CLP were divided into the L group (lactate < 1.64 mmol/L) and M group (lactate ≥ 1.64 mmol/L). In the M group, the animals had significantly higher murine sepsis scores and none survived 5 days post-CLP, and the rate of validated septic animals, serum procalcitonin, high mobility group box 1, blood urea nitrogen, alanine transaminase, cardiac troponin I, and the wet-to-dry weight ratio were significantly higher compared to the L group. Worsen PaO2/FiO2, microcirculations, and mean arterial pressure were observed in the M group. More severe damage in major organs was confirmed by histopathological scores in the M group compared with the L group. In conclusion, lactate ≥ 1.64 mmol/L might serve as a potential biomarker to identify the onset of sepsis in a rat CLP model.
Project description:Brain dysfunction is frequently observed in sepsis as a consequence of changes in cerebral structure and metabolism, resulting in worse outcome and reduced life-quality of surviving patients. However, the mechanisms of sepsis-associated encephalopathy development and a better characterization of this syndrome in vivo are lacking. Here, we used magnetic resonance imaging (MRI) techniques to assess brain morphology and metabolism in a murine sepsis model (cecal ligation and puncture, CLP). Sham-operated and CLP mice were subjected to a complete MRI session at baseline, 6 and 24 h after surgery. Accumulation of vasogenic edematic fluid at the base of the brain was observed in T(2)-weighted image at 6 and 24 h after CLP. Also, the water apparent diffusion coefficients in both hippocampus and cortex were decreased, suggesting a cytotoxic edema in brains of nonsurvival septic animals. Moreover, the N-acetylaspartate/choline ratio was reduced in brains of septic mice, indicating neuronal damage. In conclusion, noninvasive assessment by MRI allowed the identification of new aspects of brain damage in sepsis, including cytotoxic and vasogenic edema as well as neuronal damage. These findings highlight the potential applications of MRI techniques for the diagnostic and therapeutic studies in sepsis.
Project description:Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, which is a life-threatening condition resulting from a dysregulated host response to infection. Pyroptosis, a pro-inflammatory mode of lytic cell death mediated by GSDMD (Gasdermin D), is involved in the pathogenesis of SAE. While autophagy has been extensively studied in SAE, the role of nuclear autophagy is not yet well understood. In this study, we aimed to investigate the involvement of pyroptosis and neural nuclear autophagy in the pathogenesis of SAE. We analyzed a CLP (cecal ligation and puncture)-induced SAE model in wild-type and GSDMD-/- mice to gain insights into the underlying mechanisms. Here, we show that in sepsis, neural nuclear autophagy is extremely activated, and nuclear LaminB decreases and is accompanied by an increase in the ratio of LC3BII/I. These effects can be reversed in GSDMD-/- mice. The behavioral outcomes of septic wild-type mice are impaired by the evidence from the novel object recognition test (NORT) and open field test (OFT), but are improved in septic GSDMD-/- mice. In conclusion, our study demonstrates the activation of neural nuclear autophagy in SAE. The absence of GSDMD inhibits nuclear autophagy and improves the behavioral outcomes of SAE.
Project description:The levels of circulating microRNAs (miRNAs) in mice with experimental sepsis induced by cecal ligation and puncture (CLP) were determined using whole blood samples obtained from C57BL/6 mice at 4, 8, and 24 h after CLP; miRNA expression analysis was performed in these samples using an miRNA array. Microarray analysis revealed upregulation of 10 miRNA targets (miR-16, miR-17, miR-20a, miR-20b, miR-26a, miR-26b, miR-106a, miR-106b, miR-195, and miR-451). The expression of these miRNA targets in the whole blood, serum, and white blood cells (WBCs) of CLP mice was quantified using quantitative real-time PCR; these values were compared to those in sham-operated C57BL/6 mice, and the results indicated that these miRNA targets were significantly up-regulated in the whole blood and serum but not in the WBCs. In addition, the levels of these 10 miRNA targets in the serum of Tlr2-/-, Tlr4-/-, and NF-κB-/- mice at 8 h after CLP did not decrease significantly., which indicated that the transcription of these miRNAs was not directly mediated by the TLR2/NF-κB or TLR4/NF-κB pathway, and pathways induced by exposure to the gram-positive or gram-negative bacteria. Immunoprecipitation with the Argonaute 2 ribonucleoprotein complex revealed significantly increased expression of the 10 miRNA targets in the serum of mice after CLP, and the levels of 6 (miR-16, miR-17, miR-20a, miR-20b, miR-26a, and miR-26b) of these 10 miRNA targets increased significantly in exosomes isolated using ExoQuick precipitation solution. In this study, we identified circulating miRNAs that were up-regulated after CLP and determined the increase in the levels of these miRNAs, and our results suggest that circulating Ago2 complexes and exosomes may be responsible for the stability of miRNAs in the serum.
Project description:To profile the expression of circulating microRNAs (miRNAs) of mice in experimental sepsis by cecal ligation and puncture (CLP), the whole blood samples were obtained from C57BL/6 mice at 4, 8, and 24 h following CLP for miRNA expression analysis using a miRNA array (The Mouse & Rat miRNA OneArray® v3). Briefly, mice were anesthetized with a combination of ketamine and xylazine as the anesthetic/analgesic agents and a midline abdominal incision was made. The cecum was mobilized, ligated in the middle of cecum below the ileocecal valve, punctured once with a 21 G needle, and a little stool was squeeze out of the cecum to induce polymicrobial peritonitis. The abdominal wall was closed in two layers. Sham-operated mice underwent the same procedure, including opening the peritoneum and exposing the bowel, but without ligation and needle perforation of the cecum.
Project description:Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies.ImportanceSepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.
Project description:To profile the expression of circulating microRNAs (miRNAs) of mice in experimental sepsis by cecal ligation and puncture (CLP), the whole blood samples were obtained from C57BL/6 mice at 4, 8, and 24 h following CLP for miRNA expression analysis using a miRNA array (The Mouse & Rat miRNA OneArray® v3). Briefly, mice were anesthetized with a combination of ketamine and xylazine as the anesthetic/analgesic agents and a midline abdominal incision was made. The cecum was mobilized, ligated in the middle of cecum below the ileocecal valve, punctured once with a 21 G needle, and a little stool was squeeze out of the cecum to induce polymicrobial peritonitis. The abdominal wall was closed in two layers. Sham-operated mice underwent the same procedure, including opening the peritoneum and exposing the bowel, but without ligation and needle perforation of the cecum. the whole blood samples were obtained from C57BL/6 mice at 4, 8, and 24 h following CLP for miRNA expression analysis using a miRNA array (The miRNA OneArray® v3).
Project description:Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection with a high mortality. 5-Hydroxytryptamine (5-HT) is an important regulatory factor in inflammation. The aim of this study is to investigate the role of 5-HT on cecal ligation and puncture- (CLP-) induced sepsis in the mouse model. CLP was performed on C57B/6 wild-type (WT) mice and tryptophan hydroxylase 1 (TPH1) knockout (KO) mice. The results showed that the 5-HT-sufficient group mice had a significantly lower survival rate than the 5-HT-deficient group in CLP-induced sepsis and septic shock. The KO-CLP sepsis group received a lower clinical score than the WT-CLP sepsis group. Meanwhile, the body temperature of mice in the KO-CLP sepsis group was higher than that in the WT-CLP sepsis group and was much closer to the normal body temperature 24 hours after CLP. The tissue histopathology analysis revealed that 5-HT markedly exacerbated histological damages in the peritoneum, lung, liver, kidney, intestinal tissue, and heart in sepsis. Moreover, significant lower levels of TNF-α, IL-6, bacterial loads, MPO, and ROS were discovered in the KO-CLP sepsis group in contrast to the WT-CLP sepsis group. In conclusion, 5-HT drives mortality and exacerbates organ dysfunction by promoting serum cytokines and bacterial loads as well as facilitating oxidative stress in the process of sepsis.