Project description:Organic acids produced during ensiled wet storage are beneficial during the storage process, both for biomass preservation, and to aid in mild in-situ pretreatment. However, there is concern these acids could later have negative impacts on downstream processes, especially microbial fermentation. Organic acids can inhibit microbial metabolism or growth, which in turn could affect biofuel productivity or yield. This study investigated the interaction of organic acids produced during ensiled storage with subsequent pretreatment of the resulting corn stover silage, as well as the potential for interference with downstream ethanol fermentation. Interaction with pretreatment was observed by measuring xylan and glucan removal and the formation of inhibitors. The results indicated that organic acids generally do not impede downstream processes and in fact can be beneficial. The levels of organic acids produced during 220 days of storage jar tests at 23°C or 37°C, and their transformation during pretreatment, remained below inhibitory levels. Concentrations of individual acids did not exceed 6 g per liter of the pretreated volume, and < 5% on a dry matter basis. Whereas, unensiled corn stover required 15 min of 190°C pretreatment to optimize sugar release, ensiled corn stover could be treated equally effectively at a lower pretreatment duration of 10 min. Furthermore, the different organic acid profiles that accumulate at various storage moisture levels (35-65%) do not differ significantly in their impact on downstream ethanol fermentation. These results indicate biorefineries using ensiled corn stover feedstock at 35-65% moisture levels can expect as good or better biofuel yields as with unensiled stover, while reducing pretreatment costs.
Project description:Variable moisture content of biomass during storage is known to compromise feedstock stability, yet a great deal of uncertainty remains on how to manage or mitigate the issue. While moisture contents above 20% risk unacceptable losses in aerobic feed and forage storage, no quantitative relationship exists between corn stover moisture content and rates or extents of degradation for bioenergy use. This work quantifies the relationship between initial moisture content of aerobically stored corn (Zea mays L.) stover biomass and dry matter loss through time. Corn stover with 20% to 52% moisture was stored under aerobic conditions in laboratory reactors while dry matter loss was measured in real time, reaching extents of 8% to 28% by the end of storage. Rates and extents of degradation were proportional to moisture content but were not linearly related. A moisture content "threshold" exists between 36% and 52% above which rates and extents of degradation increase rapidly. Compositional changes included glucan and lignin enrichment resulting from hemicellulose component (xylan and acetyl) biodegradation. Moisture desorption characteristics of the post-storage materials suggest chemical and/or physical changes that increase biomass hydrophilicity. Monomerization of carbohydrates though dilute acid pretreatment and enzymatic hydrolysis resulted in only minor changes, suggesting that degradation does not negatively influence conversion potential of the remaining biomass. Total dry matter preservation remains one of the most significant challenges for a biorefinery.
Project description:BackgroundBiomass fuel has been used to supply heat or crude materials in industry to replace the traditional fossil fuel which was one of the chief causes of climate warming. However, the large-scale utilization of biomass fuel was restricted due to the low density and high hydrophilicity of biomass, which causes the problem of transportation and storage. Therefore, pelletization of biomass was used to improve its fuel density. At present, the biomass pellet was widely used to supply heat, gas or electricity generation via gasification, which supplied clean and sustainable energy for industry. However, the energy consumption during pelletization and high hydrophilicity of pellets were still the problem for the large-scale application of biomass pellet. In this study, hydrothermal carbonization and surfactant played the role of permeation, adsorption and wetting in the solution, which was expected to improve the fuel properties and pelletization effectivity of corn stover.ResultsIn the article, surfactant (PEG400, Span80, SDBS) was chosen to be combined with wet torrefaction to overcome the drawbacks and improve the pelletization and combustion properties of Corn stover (CS). Especially, hydrothermal carbonization (HTC) combined with surfactant improves the yield of solid products and reduces the ash content of solid product, which was beneficial for reducing the ashes of furnace during gasification. Meanwhile, surfactant promotes the formation of pseudo-lignin and the absorption for oil with low O and high C during HTC, which improves the energy density of solid product. Furthermore, the oil in solid product plays the role of lubricant and binder, which reduces the negative effect of high energy consumption, low bulk density and weak pellets strength caused by HTC during pelletization. HTC combined with surfactant improved the hydrophobicity of pellet as well as grindability due to the modification of solid product. Moreover, surfactant combined with HTC improved the combustion characteristic of solid product such as ignition and burning temperature as well as kinetic parameters due to the bio-oil absorbed and the improvement of surface and porosity.ConclusionsThe study supplied a new, less-energy intensive and effective method to improve the pelletization and combustion properties of corn stover via hydrothermal carbonization combined with surfactant, and provided a promising alternative fuel from corn stover .
Project description:The biological pretreatment of lignocellulosic biomass is a low-cost and eco-friendly method for facilitating enzymatic hydrolysis. In this study, strains with lignin depletion capability were screened using a high-throughput screening method. Sixty-three strains were screened out and Myrothecium verrucaria secreted three lignin-degrading enzymes simultaneously during the bio-pretreatment process. The activity levels of laccase, lignin peroxidase and manganese peroxidase were 6.61, 0.78 and 1.31 U g-1 dry biomass. The content of lignin in corn stover decreased by 42.30% after bio-pretreatment, and the conversion rate increased by 123.84% during the subsequent saccharification process in comparison with the untreated corn stover. Furthermore, the effects of bio-pretreatment on the structure of corn stover were presented using a scanning electron microscope (SEM), Brunauer-Emmet-Teller (BET), X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). The results showed that M.V. is a promising lignin-degrading fungus. This research demonstrated an efficient pretreatment approach for enhancing the enzymatic saccharification of corn stover.
Project description:Corn stover is a global resource used in many industrial sectors including bioenergy, fuel, and livestock operations. However, stover removal can negatively impact soil nutrient availability, especially nitrogen (N) and phosphorus (P), biological activity, and soil health. We evaluated the effects of corn stover management combined with N and P fertilization on soil quality, using soil chemical (nitrate, ammonium and Bray-1 P) and biological parameters (β-glucosidase, alkaline phosphatase, arylsulfatase activities and fluorescein diacetate hydrolysis-FDA). The experiment was performed on a Mollisol (Typic Endoaquoll) in a continuous corn system from 2013 to 2015 in Minnesota, USA. The treatments tested included six N rates (0 to 200 kg N ha-1), five P rates (0 to 100 kg P2O5 ha-1), and two residue management strategies (residue removed or incorporated) totalling 60 treatments. Corn stover management significantly impacted soil mineral-N forms and enzyme activity. In general, plots where residue was incorporated were found to have high NH4+ and enzyme activity compared to plots where residue was removed. In contrast, fields where residue was removed showed higher NO3- than plots where residue was incorporated. Residue management had little effect on soil available P. Soil enzyme activity was affected by both nutrient and residue management. In most cases, activity of the enzymes measured in plots where residue was removed frequently showed a positive response to added N and P. In contrast, soil enzyme responses to applied N and P in plots where residue was incorporated were less evident. Soil available nutrients tended to decrease in plots where residue was removed compared with plots where residue was incorporated. In conclusion, stover removal was found to have significant potential to change soil chemical and biological properties and caution should be taken when significant amounts of stover are removed from continuous corn fields. The residue removal could decrease different enzymes related to C-cycle (β-glucosidase) and soil microbial activity (FDA) over continuous cropping seasons, impairing soil health.
Project description:The biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses depends exclusively on the effective pretreatment process. Herein, we report a significant enhancement of enzymatic saccharification obtained with corn stover using a bacterial strain Bacillus sp. P3. The hemicellulose removal from corn stover by the strain Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that an alkaline-resistant xylanase as well as other enzymes produced by Bacillus sp. P3 in fermentation broth led to a substantially enhanced hemicellulose removal rate from corn stover within pH 9.36-9.68. However, after a 20-day pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was decreased by 35%. After 72 h of saccharification using 20 U/g of commercial cellulase, the yield of reducing sugar released from 20-day pretreated corn stover was increased by 56% in comparison to the untreated corn stover. Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic hydrolysis process of industrial bioenergy productions.Supplementary informationThe online version contains supplementary material available at 10.1186/s40643-021-00445-8.
Project description:Pleurotus ostreatus is a species of white-rot fungi that effectively degrades lignin. In this study, we aimed to efficiently express the lac-2 gene of Pleurotus ostreatus in the Pichia pastoris X33 yeast strain. The enzymatic properties of recombinant yeast were determined, and its ability to degrade corn stover lignin was determined. The results showed the optimum pH values of recombinant laccase for 2,2'-Azinobis-3-ethylbenzothiazoline-6-sulfonic acid, 2,6-dimethoxyphenol, and 2-methoxyphenol were 3.0, 3.0, and 3.5, respectively. The optimum reaction temperature was 50 °C, and it had good thermal stability and acid and alkali resistance. The degradation rate of lignin in corn stover by recombinant laccase was 18.36%, and the native Pleurotus ostreatus degradation rate was 14.05%, the difference between them is significant (p < 0.05). This experiment lays a foundation for the study of the degradation mechanism of lignin by laccase.
Project description:The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici.A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N2 was found to exhibit improved performance over CO2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agents were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process.These results highlight the importance of media and fermentation strategy to improve PA production. Overall, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.
Project description:Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7-104.7 TgC as of 2050, 70-101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m(2)/yr (i.e., 6.6-10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.
Project description:Lignocellulosic composite in corn stover is a candidate biofuel feedstock of substantial abundance and sustainability. Its utilization is hampered by resistance of constituent cellulose fibrils to deconstruction. Here we use multi-scale studies of pretreated corn stover to elucidate the molecular mechanism of deconstruction and investigate the basis of recalcitrance. Dilute acid pretreatment has modest impact on fibrillar bundles at 0.1 micron length scales while leading to significant disorientation of individual fibrils. It disintegrates many fibrils into monomeric cellulose chains or small side-by-side aggregates. Residual crystalline fibrils lose amorphous surface material, change twist and where still cross-linked, coil around one another. Yields from enzymatic digestion are largely due to hydrolysis of individual cellulose chains and fragments generated during pretreatments. Fibrils that remain intact after pretreatment display substantial resistance to enzymatic digestion. Optimization of yield will require strategies that maximize generation of fragments and minimize preservation of intact cellulosic fibrils.