Project description:MicroRNA-34a (miR-34a) plays an essential role against tumorigenesis and progression of cancer metastasis. Here, we analyzed the expression, targets and functional effects of miR-34a on epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs), such as TWIST1, SLUG and ZEB1/2, and an EMT-inducing protein NOTCH1 in breast cancer (BC) cell migration and invasion and its correlation with tumorigenesis and clinical outcomes. Expression of miR-34a is downregulated in human metastatic breast cancers (MBC) compared to normal breast tissues and is negatively correlated with clinicopathological features of MBC patients. Ectopic expression of miR-34a in MBC cell-line BT-549 significantly inhibits cell migration and invasion, but exhibits no clear effect on BC cell growth. We found that miR-34a is able to inactivate EMT signaling pathway with mediatory of NOTCH1, TWIST1, and ZEB1 upon 3'-UTR activity in MBC cell lines, but has no inhibitory effects on SLUG and ZEB2. Furthermore, we investigated the synergistic effects of Thymoquinone (TQ) and miR-34a together on the expression of EMT-associated proteins. Results showed that co-delivery of miR-34a and TQ is able to inactivate EMT signaling pathway by directly targeting TWIST1 and ZEB1 in BT-549 cell line, indicating that they might be a promising therapeutic combination against breast cancer metastasis. Epigenetic inactivation of the EMT-TFs/miR-34a pathway can potentially alter the equilibrium of these regulations, facilitating EMT and metastasis in BC. Altogether, our findings suggest that miR-34a alone could serve as a potential therapeutic agent for MBC, and together with TQ, their therapeutic potential is synergistically enhanced.
Project description:Cell migration and invasion are highly regulated processes involved in both physiological and pathological conditions. Here we show that autophagy modulation regulates the migration and invasion capabilities of glioblastoma (GBM) cells. We observed that during autophagy occurrence, obtained by nutrient deprivation or by pharmacological inhibition of the mTOR complexes, GBM migration and chemokine-mediated invasion were both impaired. We also observed that SNAIL and SLUG, two master regulators of the epithelial-mesenchymal transition (EMT process), were down-regulated upon autophagy stimulation and, as a consequence, we found a transcriptional and translational up-regulation of N- and R-cadherins. Conversely, in BECLIN 1-silenced GBM cells, an increased migration capability and an up-regulation of SNAIL and SLUG was observed, with a resulting decrease in N- and R-cadherin mRNAs. ATG5 and ATG7 down-regulation also resulted in an increased migration and invasion of GBM cells combined to an up-regulation of the two EMT regulators. Finally, experiments performed in primary GBM cells from patients largely confirmed the results obtained in established cell cultures. Overall, our results indicate that autophagy modulation triggers a molecular switch from a mesenchymal phenotype to an epithelial-like one in GBM cellular models. Since the aggressiveness and lethality of GBM is defined by local invasion and resistance to chemotherapy, we believe that our evidence provides a further rationale for including autophagy/mTOR-based targets in the current therapeutical regimen of GBM patients.
Project description:Esophageal cancer (EC) is a complex gastrointestinal malignancy and its global incidence rate ranks 7th among all cancer types. Due to its aggressive nature and the potential for early metastasis, the survival rates of patients with EC are poor. Dihydroartemisinin (DHA) is the primary active derivative of artemisinin, and, as well as its use as an anti-malarial, DHA has also exhibited antitumor activity in various cancer models, such as cholangiocarcinoma, head and neck carcinoma, and hepatocellular carcinoma cells. However, the molecular mechanisms underlying the antitumor effect of DHA in the treatment of EC remains poorly understood. The results of the present study demonstrated that DHA significantly inhibited the migration of TE-1 and Eca-109 EC cells in a dose-dependent manner by activating autophagy. DHA treatment also significantly reversed epithelial-mesenchymal transition (EMT) by downregulating the EMT-associated markers, N-cadherin and vimentin, and upregulating the expression of E-cadherin. Mechanistically, DHA treatment decreased Akt phosphorylation and inhibited the Akt/mTOR signaling pathway, leading to the activation of autophagy. The levels of the autophagy-associated proteins were suppressed and DHA-mediated inhibition of migration in EC cells was reversed when an active form of Akt was overexpressed. In conclusion, the present study demonstrated the potential value of DHA in the treatment of EC, and revealed the underlying mechanism by which FDHA inhibits cellular migration.
Project description:OBJECTIVE:To investigate the effect of Aurora kinase B (AURKB) silencing-induced autophagy on apoptosis of osteosarcoma 143B cells and the underlying molecular mechanisms. METHODS:Human osteosarcoma 143B cells were transfected with Lv/shAURKB or the negative control vector Lv/shScrambled followed by treatment with chloroquine (CQ) for 24 h. Western blotting was performed to detect the protein expression levels of AURKB, P62, LC3, cleaved caspase-3, Bcl-2, and P-ULK1Ser555. Transmission electron microscopy and LC3 dual-label fluorescence method were used to trace the autophagosomes in 143B cells to assess cell autophagy, and the cell apoptosis was detected using flow cytometry and TUNEL assay. Co-immunoprecipitation assay was used to detect the interaction between AURKB and ULK1. RESULTS:The ratio of autophagy-related proteins LC3 II/I and the number of autophagosomes were significantly increased in 143B cells after transfection with Lv/shAURKB (P < 0.05), which significantly increased the expression of cleaved caspase-3 and reduced the expression of Bcl-2 (P < 0.05). Combined treatment of the cells with Lv/shAURKB and the autophagy inhibitor chloroquine obviously restored the expressions of caspase-3 and Bcl-2 (P < 0.05). Transfection with Lv/shAURKB significantly increased the apoptosis rate of 143B cells (P < 0.05), and this effect was significantly antagonized by combined treatment with chloroquine (P < 0.05). AURKB silencing strongly activated the phosphorylation of the autophagy-initiating protein ULK1Ser555 in 143B cells (P < 0.05). The results of co-immunoprecipitation assay confirmed when AURKB was immunoprecipitated, ULK1 also precipitated. CONCLUSIONS:Silencing AURKB can induce autophagy by activating ULK1Ser555 phosphorylation to promote apoptosis in 143B cells.
Project description:Vascular cell adhesion molecular 1 (VCAM1), an important member of the immunoglobulin superfamily, is related to the development of malignant tumors, such as breast cancer, melanoma, and renal clear cell carcinoma. However, the molecular role and mechanism of VCAM1 in the regulation of the progression of colorectal cancer (CRC) has rarely been studied. The results of IHC and RT-PCR analyses proved that VCAM1 was upregulated in human CRC tissues compared with matched adjacent normal intestinal epithelial tissues. Moreover, analysis of data from the TCGA and Gene Expression Omnibus (GEO) databases revealed that a higher level of VCAM1 was strongly correlated with poor differentiation, metastasis, and short survival in CRC patients. Furthermore, VCAM1 significantly influenced the invasion and metastasis of CRC cells in vitro and in vivo and activated the EMT program, by which cancer cells adhere to the endothelium and cross the vessel wall by forming pseudopodia and invadopodia. The current findings demonstrate that VCAM1 promotes tumor progression in CRC.
Project description:Diallyl trisulfide (DATS) is an attractive anti-cancer phytochemical with in vitro and in vivo growth inhibitory effects against different solid tumors including breast cancer. We have shown previously that an immortalized mammary epithelial cell line (MCF-10A) is resistant to growth inhibition by DATS. In this study, we performed RNA-seq analysis using a breast cancer cell line (SK-BR-3) and MCF-10A cells to gain insights into cancer selective effects of DATS. The Gene Ontology analysis revealed upregulation of genes associated with actin cytoskeleton but downregulation of mitochondria-related genes in the SK-BR-3 human breast cancer cell line but not in the non-oncogenic MCF-10A cell line upon treatment with DATS. Quantitative real-time reverse transcription polymerase chain reaction confirmed DATS-mediated upregulation of several actin cytoskeleton-related genes in the SK-BR-3 cell line. The DATS treatment dose-dependently disrupted actin cytoskeleton in the SK-BR-3 cell line, whereas the MCF-10A cell line was more resistant to this effect. The DATS treatment caused a marked increase in phosphorylation of dynamin-1-like (DRP1) protein in the SK-BR-3 cell line. However, the DATS-mediated apoptosis was not affected by genetic deletion of DRP1 protein. The Reactome pathway analysis showed downregulation of genes associated with citric acid cycle in the SK-BR-3 cell line but not in the MCF-10A cells. However, expression of aconitase 2 or dihydrolipoamide S-succinyltransferase was not affected by DATS treatment. In conclusion, this study reveals that actin cytoskeleton is a novel target of DATS in the SK-BR-3 cell line, which may explain its inhibitory effect on breast cancer cell migration.
Project description:The multiterritory perforator flap is one of the widest flap patterns used to repair tissue defects. However, flap necrosis of the distal part is still a challenging issue for plastic surgeons. Diallyl trisulfide (DATS) is an efficient ingredient extracted from garlic, exerting many important effects on different diseases. Our experiment aims to reveal whether DATS has a beneficial effect on the survival of perforator flaps and to explore its mechanism of action. The results showed that DATS enhanced angiogenesis and autophagy and reduced cell apoptosis and oxidative stress, thereby improving the survival rate of skin flaps. After co-administration with autophagy inhibitor 3-methyladenine (3MA), perforator flap survival was further improved. Mechanistically, we showed that PI3K/Akt and AMPK-HIF-1α signaling pathways in flap were activated under DATS treatment. All in all, DATS promoted the survival of multiterritory perforator flaps via the synergistic regulation of PI3K/Akt and AMPK-HIF-1α signaling pathways, and inhibition of DATS-induced autophagy further improves flap survival.
Project description:Tubeimoside-1 (TBMS1) is one of the extracts of rhizoma bolbostemmae, which has remarkable anti-cancer function in the treatment of esophagus and gastric cancer in traditional Chinese medicine. However the mechanisms of its anti-cancer function is remain unclear. In this study, we demonstrate that TBMS1 could inhibit cell growth and metastasis in glioblastoma. MET is a member of the receptor tyrosine kinase family, which amplifies frequently in various human cancers. As an important proto-oncogene, multiple inhibitors have been developed for the therapy of cancers. Here, we found TBMS1 could reduce/decrease the protein level of MET via increasing its Ubiquitination degradation. Therefore, TBMS1 is a promising compound for the treatment of glioblastoma and an inhibitor of MET.
Project description:Osteosarcoma (OS) is the most common primary pediatric malignancy of the bone having poor prognosis and long-term survival rates of less than 30% in patients with metastasis. MicroRNA-509 was reported to be downregulated in OS. We and others previously published that miR-509-3p can strongly attenuate cellular migration/invasion and sensitize ovarian cancer to cisplatin. Here, we show that overexpression of miR-509-3p inhibited migration of primary OS cell lines U2OS, HOS, and SaOS2 as well as metastatic derivatives 143B and LM7. miR-509-3p overexpression also inhibited proliferation and invasion of HOS and 143B cells and sensitized cells to cisplatin. Luciferase reporter assays using 3'-UTRs of predicted miR-509-3p targets associated with metastatic phenotypes revealed ARHGAP1 could be one of the downstream effectors of miR-509-3p in HOS. To find the global impact of miR-509-3p overexpression and cisplatin treatment we performed Reverse Phase Protein Analysis (RPPA). AXL, which has been reported to play a critical role in cisplatin resistance and confirmed as direct target of miR-509-3p was downregulated upon miR-509-3p treatment and further down-regulated upon miR-509-3p + cisplatin treatment. We propose that the miR-509-3p/AXL and miR-509-3p/ARHGAP1 axes have the potential to uncover new druggable targets for the treatment of drug resistant metastatic osteosarcoma.
Project description:Repeated infection with high-risk HPV is a major cause for the development and metastasis of human cervical cancer, even though the mechanism of the metastasis is still not completely understood. Here, we reported that miR-218 (microRNA-218) was downregulated in cervical cancer tissues, especially in metastatic cancer tissues. We found that miR-218 expression was associated with clinicopathological characteristics of patients with cervical cancer. MiR-218 overexpression inhibited Epithelial-Mesenchymal Transition (EMT), migration and invasiveness of cervical cancer cells in vitro. Moreover, miR-218 repressed the expression of SFMFBT1 (Scm-like with four MBT domains 1) and DCUN1D1 (defective in cullin neddylation 1, domain containing 1) by direct binding to the 3'UTRs of the mRNAs. The overexpression of SFMBT1 induced EMT and increased the migration and invasiveness of cervical cancer cells, while the overexpression of DCUN1D1 increased the migration and invasiveness of these cells, but did not induce EMT. An inverse correlation was observed between the expression of miR-218 and DCUN1D1 protein in cervical cancer tissues. Importantly, HPV16 E6 downregulated the expression of miR-218 in cervical cancer, while miR-218 rescued the promotion effect of HPV16 E6 on the expression of SFMBT1 and DCUN1D1. Taken together, our results revealed that HPV16 E6 promoted EMT and invasion in cervical cancer via the repression of miR-218, while miR-218 inhibited EMT and invasion in cervical cancer by targeting SFMBT1 and DCUN1D1.