Project description:BackgroundExosomal miRNAs regulate gene expression and play important roles in several diseases. We used exosomal miRNA profiling to investigate diagnostic biomarkers of epithelial ovarian cancer (EOC).MethodsIn total, 55 individuals were enrolled, comprising healthy (n = 21) and EOC subjects (n = 34). Small mRNA (smRNA) sequencing and real-time PCR (RT-PCR) were performed to identify potential biomarkers. Receiver operating characteristic (ROC) curves were conducted to determine biomarker sensitivity and specificity.ResultsUsing smRNA sequencing, we identified seven up-regulated (miR-4732-5p, miR-877-5p, miR-574-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7f-5p) and two down-regulated miRNAs (miR-1273f and miR-342-3p) in EOC patients when compared with healthy subjects. Of these, miR-4732-5p and miR-1273f were the most up-regulated and down-regulated respectively, therefore they were selected for RT-PCR analysis. Plasma derived exosomal miR-4732-5p had an area under the ROC curve of 0.889, with 85.7% sensitivity and 82.4% specificity in distinguishing EOC patients from healthy subjects (p<0.0001) and could be a potential biomarker for monitoring the EOC progression from early stage to late stage (p = 0.018).ConclusionsPlasma derived exosomal miR-4732-5p may be a promising candidate biomarker for diagnosing EOC.
Project description:BackgroundExosomal miRNA had been proved as the promising biomarkers for multiple cancers including epithelial ovarian cancer (EOC). This study aimed to validate the diagnostic accuracy of exosomal miR-320d, miR-4479, and miR-6763-5p for EOC.Materials and methodsExosomes isolated from the plasma by ultracentrifugation were verified using TEM, qNano and western blot. MiRNAs sequencing was used to screen out the differential exosomal miRNAs and miR-320d, miR-4479, and miR-6763-5p were selected as candidates, which were further verified by RT-qPCR in 168 healthy donors and 161 primary EOC patients. Besides, the diagnostic accuracy of these three exosomal miRNAs were evaluated using the receiver operating characteristic curve (ROC).ResultsMiRNAs sequencing revealed 95 differential exosomal miRNAs between EOC patients and healthy donors. Subsequently, exosomal miR-320d, miR-4479, and miR-6763-5p were significantly down regulated in EOC patients compared with healthy controls and benign patients. More importantly, these three miRNAs could serve as circulating diagnostics biomarkers for EOC, possessing areas under the curve (AUC) of 0.6549, 0.7781, and 0.6834, respectively. Moreover, these three exosomal miRNAs levels were closely associated with lymph node metastasis, meanwhile exosomal miR-320d and miR-4479 expression was related to tumor stage.ConclusionExosomal miR-320d, miR-4479, and miR-6763-5p might serve as potential biomarkers for EOC.
Project description:BackgroundHow exosomal microRNAs (miRNAs) derived from macrophages contribute to the development of drug resistance in the context of the hypoxic tumor microenvironment in epithelial ovarian cancer (EOC) remains poorly understood.MethodsThe miRNA levels were detected by qRT-PCR. Protein levels of HIF-1α, CD163 and PTEN-PI3K/AKT pathway were assessed by Western blot (WB) and Immunohistochemistry (IHC). Exosomes were isolated, and then confirmed by Transmission electron microscopy (TEM), Nanoparticle Tracking Analysis (NTA) and WB. Internalization of macrophages-secreted exosomes in EOC cells was detected by Confocal microscope. Subsequently, Dual-luciferase reporter assay verified PTEN was the target of miR-223. Gain- and loss-of-function experiments, rescue experiments, and SKOV3 xenograft models were performed to uncover the underlying mechanisms of miR-223 and PTEN-PI3K/AKT pathway, as well as the exosomal miR-223 in inducing multidrug resistance in vitro and in vivo.ResultsHere, we showed hypoxic EOC cells triggered macrophages recruitment and induced macrophages into a tumor-associated macrophage (TAM)-like phenotype; exosomes derived from hypoxic macrophages enhanced the malignant phenotype of EOC cells, miR-223 was enriched in exosomes released from macrophages under hypoxia, which could be transferred to the co-cultivated EOC cells, accompanied by enhanced drug resistant of EOC cells. Besides, results from a functional assay revealed that exosomal miR-223 derived from macrophages promoted the drug resistance of EOC cells via the PTEN-PI3K/AKT pathway both in vivo and in vitro. Furthermore, patients with high HIF-1a expression had statistically higher CD163+ cell infiltration and intertumoral levels of miR-223. Finally, circulating exosomal miR-223 levels were closely related to the recurrence of EOC.ConclusionsThese data indicate a unique role of exosomal miR-223 in the cross-talk between macrophages and EOC cells in chemotherapy resistance, through a novel exosomal miR-223/PTEN-PI3K/AKT signaling pathway.
Project description:Exosomes are membrane vesicles that mediate intercellular communication by transporting their molecular cargo from cell to cell. We investigated whether serum levels of exosomal miR-373, miR-200a, miR-200b and miR-200c and circulating exosomes have diagnostic and prognostic relevance in a cohort of 163 epithelial ovarian cancer (EOC) patients using TaqMan MicroRNA assays and ELISA. The serum concentrations of exosomal miR-373 (p = 0.0001), miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.028) were significantly higher in EOC patients than healthy women. The levels of miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.019) could distinguish between malignant and benign ovarian tumors. While the levels of miR-373 and miR-200a were increased in all FIGO/lymph node stages (p = 0.0001), the levels of miR-200b and miR-200c were higher in patients with FIGO stage III-IV (p = 0.0001, p = 0.008, respectively) including lymph node metastasis (p = 0.0001, p = 0.004, respectively) than FIGO stages I-II. The increased levels of miR-200b and miR-200c were also associated with CA125 values (p = 0.0001, p = 0.0001, respectively) and a shorter overall survival (p = 0.007, p = 0.017, respectively). The levels of exosomes were excessively elevated in EOC patients (p = 0.0001). In all three cohorts, they were positively associated with the serum levels of exosomal miR-373 (p = 0.004), miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.008). In conclusion, the increased levels of exosomal miR-200b and miR-200c mainly observed in advanced EOC suggest that these microRNAs may be involved in tumor progression. The high concentrations of exosomes in EOC patients imply an excessive, active exosomal secretion in EOC.
Project description:The aim of the study was to develop a new diagnostic biomarker for identifying serum exosomal miRNAs specific to epithelial ovarian cancer (EOC) and to find out target gene of the miRNA for exploring the molecular mechanisms in EOC. A total of 84 cases of ovarian masses and sera were enrolled, comprising EOC (n = 71), benign ovarian neoplasms (n = 13). We detected expression of candidate miRNAs in the serum and tissue of both benign ovarian neoplasm group and EOC group using real-time polymerase chain reaction. Immunohistochemistry were constructed using formalin fixed paraffin embedded (FFPE) tissue to detect expression level of suppressor of cytokine signaling 4 (SOCS4). In the EOC group, miRNA-1290 was significantly overexpressed in serum exosomes and tissues as compared to benign ovarian neoplasm group (fold change ≥ 2, p < 0.05). We observed area under the receiver operating characteristic curve (AUC) for miR-1290, using a cut-off of 0.73, the exosomal miR-1290 from serum had AUC, sensitivity, and specificity values of 0.794, 69.2 and 87.3, respectively. In immunohistochemical study, expression of SOCS4 in EOC was lower than that in benign ovarian neoplasm. Serum exosomal miR-1290 could be considered as a biomarker for differential diagnosis of EOC from benign ovarian neoplasm and SOCS4 might be potential target gene of miR-1290 in EOC.
Project description:Hypoxia limits the survival and function of neurons in the development of Alzheimer's diseases. Exosome-dependent intercellular communication is an emerging signaling mechanism involved in tissue repair and regeneration; however, the effect and underlying mechanism of mesenchymal stem cell-derived exosomes in regulating neuronal cell apoptosis have not been determined. Here, we showed that the establishment of an AD cell model was accompanied by increased HIF-1α expression and cell apoptosis, impaired cell migration, and decreased miR-223. MSC-derived exosomes were internalized by the AD cell coculture model in a time-dependent manner, resulting in reduced cell apoptosis, enhanced cell migration and increased miR-223, and these effects were reversed by KC7F2, a hypoxic inhibitor. Furthermore, MSC-derived exosomal miR-223 inhibited the apoptosis of neurons in vitro by targeting PTEN, thus activating the PI3K/Akt pathway. In addition, exosomes isolated from the serum of AD patients promoted cell apoptosis. In short, our study showed that MSC-derived exosomal miR-223 protected neuronal cells from apoptosis through the PTEN-PI3K/Akt pathway and provided a potential therapeutic approach for AD.
Project description:The development of multidrug resistance during chemotherapy is the main obstacle for epithelial ovarian cancer (EOC) treatment. Exosomal transfer of carcinogenic microRNAs (miRNAs) might strengthen chemoresistance in recipient cells. Here, we identified through microarray analysis higher miR-429 expression in multidrug-resistant SKOV3 cells and their secreted exosomes (SKOV3-EXO) than in sensitive A2780 cells and their secreted exosomes. SKOV3-derived exosomes were internalized by A2780 cells, which permitted the transfer of miR-429. Exosomal miR-429 enhanced the proliferation and drug resistance of A2780 cells by targeting calcium-sensing receptor (CASR)/STAT3 pathway in vitro and in vivo. In addition, NF-κB-p65 was predicted to bind to the miR-429 promoter region, and the inhibition of NF-κB reduced the expression of miR-429 and led to the sensitivity of EOC cells. Consistently, A2780 cells co-incubated with SKOV3 pretreated with an NF-κB inhibitor or miR-429 antagomir showed sensitivity to cisplatin and exhibited attenuated cell proliferation. Based on our data, exosomal miR-429 functions as a primary regulator of the chemoresistance and malignant phenotypes of EOC by targeting CASR through a mechanism promoted by NF-κB and might be a therapeutic target for EOC.
Project description:BackgroundEnhancing the diagnostic efficacy of early-stage lung cancer is crucial for improving prognosis. The objective of this study was to ascertain dependable exosomal miRNAs as biomarkers for the diagnosis of lung cancer.MethodsExosomal miRNA candidates were identified through miRNA sequencing and subsequently validated in various case-control sets using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The correlation between the expression of exosomal miRNAs and the clinicopathological features of lung cancer was investigated. To assess the diagnostic efficacy of exosomal miRNAs for lung cancer, the receiver operating characteristic (ROC) curve analysis was conducted. The optimal cutoff value of exosomal miRNAs was determined in the testing cohort and subsequently confirmed in the validation cohort.ResultsThe results showed that the expression of exosomal miR-1290 was significantly elevated, while that of miR-29c-3p was significantly decreased in the plasma of lung cancer patients, especially in those with early-stage lung cancer, compared to individuals with benign lung conditions (P < 0.01). Exosomal miR-1290 and miR-29c-3p demonstrated superior diagnostic efficacy compared to conventional tumor biomarkers in distinguishing between lung cancer and benign lung diseases, as evidenced by their respective area under the curve (AUC) values of 0.934 and 0.868. Furthermore, exosomal miR-1290 and miR-29c-3p exhibited higher diagnostic efficiency in early-stage lung cancer than traditional tumor markers, with AUC values of 0.947 and 0.895, respectively. Notably, both exosomal miR-1290 and miR-29c-3p displayed substantial discriminatory capacity in distinguishing between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), as indicated by their respective AUC values of 0.810 and 0.842.ConclusionsThe findings of this study provided evidence that exosomal miR-1290 and miR-29c-3p hold significant potential as biomarkers for the early detection of lung cancer, as well as for differentiating between NSCLC and SCLC.
Project description:ObjectivesCaner-derived exosomes, containing diverse nucleic acids and proteins, are being exploited in diagnostic biomarker development. This study aims to screen and identify the altered exosomal proteins between epithelial ovarian cancer (EOC) patient and healthy volunteers, and to evaluate their diagnostic accuracy for EOC.MethodsExosomes were separate by ultracentrifugation, and then subjected to TEM, qNano, and western blot for identification. Exosomal EFEMP1 and SERPINC1 were selected by MS/MS analysis, validated by ELISA in a cohort with 163 healthy donors, 183 EOC patients and 30 patients with benign ovarian tumors.ResultsMS/MS analyses identified a total of 207 differential exosomal proteins, including the 122 up-regulated and 85 down-regulated. Exosomal EFEMP1 and SERPINC1 were significantly upregulated in EOC patients compared with those in healthy donors as well as in the benign patients, possessing favorable diagnostic efficiency. The area under the curves (AUCs) were 0.8071, 0.8211, respectively. They also exerted rather high early diagnostic efficiency, as well as the potential to distinguish the malignant patients from the benign individuals. Besides, exosomal SERPINC1 was associated with coagulation index and LE-DVT (lower extremity deep venous thrombosis) in EOC patients.ConclusionsExosomal EFEMP1 and SERPINC1 are upregulated and serve as the promising diagnostic biomarkers for EOC.
Project description:Cardiopulmonary bypass (CPB) induces inflammatory responses, and effective endogenous homeostasis is important for preventing systemic inflammation. We assessed whether plasma exosomal microRNAs in patients undergoing cardiac surgery with CPB are involved in the regulation of inflammatory responses. Plasma samples were isolated from CPB patients (n = 21) at 5 specified time points: pre-surgery, pre-CPB and 2 hours (h), 4 h and 24 h after CPB began. Plasma TNF-α expression was increased after CPB began compared to that in the pre-surgery samples. Plasma IL-8 and IL-6 expression peaked at 4 h after CPB began but was downregulated at 24 h. The number of plasma exosomes collected at 2 h (55.1 ± 8.3%), 4 h (63.8 ± 10.1%) and 24 h (83.5 ± 3.72%) after CPB began was significantly increased compared to that in the pre-CPB samples (42.8 ± 0.11%). These exosomes had a predominantly parental cellular origin from RBCs and platelets. Additionally, the plasma exosomal miR-223 levels were significantly increased after CPB began compared to those in the pre-CPB samples. Further, exosomal miR-223 from plasma collected after CPB began downregulated IL-6 and NLRP3 expression in the monocytes. Here, we present the novel findings that increased plasma exosomal miR-223 expression during cardiac surgery with CPB might play homeostatic roles in downregulating inflammatory responses through intercellular communication.