Project description:Semi-hydrogenation of alkynes to alkenes is one of the most important industrial reactions. However, it remains technically challenging to obtain high alkene selectivity especially at a high alkyne conversion because of kinetically favorable over hydrogenation. In this contribution, we show that supported ultrasmall Pt nanoparticles (2.5 nm) on mesoporous TiO2 (Pt@mTiO2) remarkably improve catalytic performance toward semi-hydrogenation of phenylacetylene. Pt@mTiO2 is prepared by co-assembly of Pt and Ti precursors with silica colloidal templates via an evaporation-induced self-assembly process, followed by further calcination for thermal decomposition of Pt precursors and crystallization of mTiO2 simultaneously. As-resultant Pt@mTiO2 discloses a high hydrogenation activity of phenylacetylene, which is 2.5 times higher than that of commercial Pt/C. More interestingly, styrene selectivity over Pt@mTiO2 remains 100% in a wide phenylacetylene conversion window (20-75%). The styrene selectivity is >80% even at 100% phenylacetylene conversion while that of the commercial Pt/C is 0%. The remarkable styrene selectivity of the Pt@mTiO2 is derived from the weakened styrene adsorption strength on the atop Pt sites as observed by diffuse reflectance infrared Fourier transform spectroscopy with CO as a probe molecule (CO-DRIFTS). Our strategy provides a new avenue for promoting alkyne to alkene transformation in the kinetically unfavorable region through novel catalyst preparation.
Project description:Herein, we developed the dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon. Sulphuric acid, hydrogen peroxide, nitric acid and aminopropyl triethoxy silane were adopted to modify the granular activated carbon. The structural characterizations suggested that the carbon materials had a large surface area, abundant pore structure, and a high number of oxygen-containing functional groups, which influenced the Pt-based catalysts on the particle size, dispersion and dehydrogenation activity. The hydrogen temperature-programmed reduction technique was utilized to investigate the interaction between the active component Pt and the various functionalized granular activated carbon materials. The CO pulse technique revealed the particle sizes and dispersion of the as-prepared Pt-based catalysts. Finally, the Pt-based catalysts were successfully applied to study their catalytic activity in the dehydrogenation reaction of methylcyclohexane. The results showed that the Pt-based catalyst over granular activated carbon functionalized with sulphuric acid groups had a higher conversion of methylcyclohexane (63%) and a larger hydrogen evolution rate (741.1 mmol gPt -1 min-1) than the other resulting Pt-based catalysts at 300 °C.
Project description:In today's age of resource scarcity, the low-cost development and utilization of renewable energy, e.g., hydrogen energy, have attracted much attention in the world. In this work, cheap natural halloysite nanotubes (HNTs) were modified with γ-aminopropyltriethoxysilane (APTES), and the functionalized HNTs were used as to support metal (Pd, Au, Ag) catalysts for dehydrogenation of formic acid (DFA). The supports and fabricated catalysts were characterized with ICP, FT-IR, XRD, XPS and TEM. The functional groups facilitate the anchoring of metal particles to the supports, which brings about the high dispersion of metallic particles in catalysts. The catalysts show high activity against DFA and exhibit selectivity of 100% toward H2 at room temperature or less. The interactions between active centers and supports were investigated by evaluation and comparison of the catalytic performances of Pd/NH2-HNTs, PdAg/NH2-HNTs and PdAu/NH2-HNTs for DFA.
Project description:Glycerol aqueous phase reforming (APR) produces hydrogen and interesting compounds at relatively mild temperatures. Among APR catalysts investigated in literature, little attention has been given to Pt supported on TiO2. Therefore, herein we propose an innovative titania support which can be obtained through an optimized microemulsion technique. This procedure provided high surface area titania nanospheres, with a peculiar high density of weak acidic sites. The material was tested in the catalytic glycerol APR after Pt deposition. A mechanism hypothesis was drawn, which evidenced the pathways giving the main products. When compared with a commercial TiO2 support, the synthetized titania provided higher hydrogen selectivity and glycerol conversion thanks to improved catalytic activity and ability to prompt consecutive dehydrogenation reactions. This was correlated to an enhanced cooperation between Pt nanoparticles and the acid sites of the support.
Project description:The methylcyclohexane (MCH)-toluene cycle is a promising liquid organic hydride system as a hydrogen carrier. Generally, MCH dehydrogenation has been conducted over Pt-supported catalysts, for which it requires temperatures higher than 623 K because of its endothermic nature. For this study, an electric field was applied to Pt/TiO2 catalyst to promote MCH dehydrogenation at low temperatures. Selective dehydrogenation was achieved with the electric field application exceeding thermodynamic equilibrium, even at 423 K. With the electric field, "inverse" kinetic isotope effect (KIE) was observed by accelerated proton collision with MCH on the Pt/TiO2 catalyst. Moreover, Pt/TiO2 catalyst showed no methane by-production and less coke formation during MCH dehydrogenation. DRIFTS and XPS measurements revealed that electron donation from TiO2 to Pt weakened the interaction between catalyst surface and π-coordination of toluene. Results show that the electric field facilitated MCH dehydrogenation without methane and coke by-production over Pt/TiO2 catalyst.
Project description:Liquid organic hydrides are regarded as promising for use as hydrogen carriers via the methylcyclohexane (MCH)-toluene-hydrogen cycle. Because of the endothermic nature of MCH dehydrogenation, the reaction is usually conducted at temperatures higher than 623 K. In this work, low-temperature catalytic MCH dehydrogenation was demonstrated over 3 wt% Pt/CeO2 catalyst by application of electric field across a fixed-bed flow reactor. Results show that a high conversion of MCH beyond thermodynamic equilibrium was achieved even at 423 K. Kinetic analyses exhibited a positive correlation of hydrogen to the reaction rates and an "inverse" kinetic isotope effect (KIE), suggesting that accelerated proton hopping with the H atoms of MCH promotes the reaction. Operando analyses and DFT calculation proved that the reverse reaction (i.e. toluene hydrogenation) was suppressed by the facilitation of toluene desorption in the electric field. The electric field promoted MCH dehydrogenation by surface proton hopping, even at low temperatures with an irreversible pathway.
Project description:Catalytic ethane dehydrogenation (EDH) was investigated to improve the efficient production of ethylene, an extremely important chemical feedstock. The perovskite oxide YCrO3 was found to be more suitable than earlier reported catalysts because it exhibits greater activity and C2H4 selectivity (94.3%) in the presence of steam at 973 K. This catalyst shows the highest activity than ever under kinetic conditions, and shows very high ethane conversion under integral reaction conditions. Comparison with EDH performance under conditions without steam revealed that steam plays an important role in stabilizing the high activity. Raman spectra of spent catalysts indicated that steam prevents coke formation, which is responsible for deactivating YCrO3. Transmission IR and XPS measurements also revealed a mechanism by which H2O forms surface oxygen species on YCrO3, consequently removing C2H6-derived coke precursors rapidly and inhibiting coke accumulation.
Project description:The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.
Project description:The development of highly productive, selective and stable propane dehydrogenation catalysts for propene production is strategic due to the increasing need for propene and the availability of shale gas, an abundant source of light alkanes. In that context, the combination of surface organometallic chemistry (SOMC) and a thermolytic molecular precursor (TMP) approach is used to prepare bimetallic subnanometric and narrowly distributed Pt-Zn alloyed particles supported on silica via grafting of a Pt precursor on surface OH groups present in a Zn single-site containing material followed by a H2 reduction treatment. This material, that exhibits a Zn to Pt molar ratio of 3 : 2 in the form of alloyed Pt-Zn particles with a 0.2 to 0.4 fraction of the overall Zn amount remaining as ZnII sites on the silica surface, catalyzes propane dehydrogenation (PDH) with high productivity (703 gC3H6 gPt -1 h-1 to 375 gC3H6 gPt -1 h-1) and very low deactivation rates (k d = 0.027 h-1) over 30 h at high WHSV (75 h-1). This study demonstrates how SOMC can provide access to highly efficient and tailored catalysts through the stepwise introduction of specific elements via grafting to generate small, homogeneously and narrowly distributed supported alloyed nanoparticles at controlled interfaces.
Project description:Noble-metal alloys are widely used as heterogeneous catalysts. However, due to the existence of scaling properties of adsorption energies on transition metal surfaces, the enhancement of catalytic activity is frequently accompanied by side reactions leading to a reduction in selectivity for the target product. Herein, we describe an approach to breaking the scaling relationship for propane dehydrogenation, an industrially important reaction, by assembling single atom alloys (SAAs), to achieve simultaneous enhancement of propylene selectivity and propane conversion. We synthesize γ-alumina-supported platinum/copper SAA catalysts by incipient wetness co-impregnation method with a high copper to platinum ratio. Single platinum atoms dispersed on copper nanoparticles dramatically enhance the desorption of surface-bounded propylene and prohibit its further dehydrogenation, resulting in high propylene selectivity (~90%). Unlike previous reported SAA applications at low temperatures (<400 °C), Pt/Cu SAA shows excellent stability of more than 120 h of operation under atmospheric pressure at 520 °C.