Ontology highlight
ABSTRACT: Background
Biomarkers that reflect glioblastoma tumour activity and treatment response are urgently needed to help guide clinical management, particularly for recurrent disease. As the urinary system is a major clearance route of circulating extracellular vesicles (EVs; 30-1000 nm nanoparticles) we explored whether sampling urinary-EVs could serve as a simple and non-invasive liquid biopsy approach for measuring glioblastoma-associated biomarkers.Methods
Fifty urine specimens (15-60 ml) were collected from 24 catheterised glioblastoma patients immediately prior to primary (n = 17) and recurrence (n = 7) surgeries, following gross total resection (n = 9), and from age/gender-matched healthy participants (n = 14). EVs isolated by differential ultracentrifugation were characterised and extracted proteomes were analysed by high-resolution data-independent acquisition liquid chromatography tandem mass spectrometry (DIA-LC-MS/MS).Results
Overall, 6857 proteins were confidently identified in urinary-EVs (q-value ≤ 0.01), including 94 EV marker proteins. Glioblastoma-specific proteomic signatures were determined, and putative urinary-EV biomarkers corresponding to tumour burden and recurrence were identified (FC ≥ | 2 | , adjust p-val≤0.05, AUC > 0.9).Conclusion
In-depth DIA-LC-MS/MS characterisation of urinary-EVs substantiates urine as a viable source of glioblastoma biomarkers. The promising 'liquid gold' biomarker panels described here warrant further investigation.
SUBMITTER: Hallal SM
PROVIDER: S-EPMC10912426 | biostudies-literature | 2024 Mar
REPOSITORIES: biostudies-literature
British journal of cancer 20240111 5
<h4>Background</h4>Biomarkers that reflect glioblastoma tumour activity and treatment response are urgently needed to help guide clinical management, particularly for recurrent disease. As the urinary system is a major clearance route of circulating extracellular vesicles (EVs; 30-1000 nm nanoparticles) we explored whether sampling urinary-EVs could serve as a simple and non-invasive liquid biopsy approach for measuring glioblastoma-associated biomarkers.<h4>Methods</h4>Fifty urine specimens (15 ...[more]