Project description:Dendritic spines are the postsynaptic compartments of excitatory synapses, however, a substantial subset of spines additionally receives inhibitory input. In such dually innervated spines (DiSs), excitatory long-term potentiation (LTP) mechanisms are suppressed, but can be enabled by blocking tonic inhibitory GABAB receptor signaling. Here we show that LTP mechanisms at DiSs are also enabled by two other excitatory LTP stimuli. In hippocampal neurons, these chemical LTP (cLTP) stimuli induced robust movement of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to DiSs. Such synaptic CaMKII accumulation is an essential LTP mechanism at singly innervated spines (SiSs). Indeed, CaMKII accumulation at DiSs was also accompanied by other readouts for successful LTP induction: spine growth and surface insertion of GluA1. Thus, DiSs are capable of the same LTP mechanisms as SiSs, although induction of these mechanism additionally requires either reduced inhibitory signaling or increased excitatory stimulation. This additional regulation may provide further computational control.
Project description:Dendritic spine enlargement by synaptic activation is thought to increase synaptic efficacy underlying learning and memory. This process requires forces generated by actin polymerization and actin-adhesion coupling (clutch coupling). Here, we describe a protocol to monitor actin filament retrograde flow and actin polymerization within spines using a standard epi-fluorescence microscope. In combination with chemical long-term potentiation, this protocol allows us to quantify clutch coupling efficiency and actin polymerization rate, which are essential variables for generating forces for activity-dependent spine enlargement. For complete details on the use and execution of this protocol, please refer to Kastian et al. (2021).
Project description:Dendritic spines, small protrusions of the dendrites, enlarge upon LTP induction, linking morphological and functional properties. Although the role of actin in spine enlargement has been well studied, little is known about its relationship with mechanical membrane properties, such as membrane tension, which is involved in many cell processes, like exocytosis. Here, we use a 3D model of the dendritic spine to investigate how polymerization of actin filaments can effectively elevate the membrane tension to trigger exocytosis in a domain close to the tip of the spine. Moreover, we show that the same pool of actin promotes full membrane fusion after exocytosis and spine stabilization.
Project description:The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function.
Project description:Dendritic spines are the main postsynaptic site of excitatory contacts between neurons in the central nervous system. On cortical neurons, spines undergo a continuous turnover regulated by development and sensory activity. However, the functional implications of this synaptic remodeling for network properties remain currently unknown. Using repetitive confocal imaging on hippocampal organotypic cultures, we find that learning-related patterns of activity that induce long-term potentiation act as a selection mechanism for the stabilization and localization of spines. Through a lasting N-methyl-D-aspartate receptor and protein synthesis-dependent increase in protrusion growth and turnover, induction of plasticity promotes a pruning and replacement of nonactivated spines by new ones together with a selective stabilization of activated synapses. Furthermore, most newly formed spines preferentially grow in close proximity to activated synapses and become functional within 24 h, leading to a clustering of functional synapses. Our results indicate that synaptic remodeling associated with induction of long-term potentiation favors the selection of inputs showing spatiotemporal interactions on a given neuron.
Project description:A human variant in the BDNF gene (Val66Met; rs6265) is associated with impaired fear extinction. Using super-resolution imaging, we demonstrate that the BDNF Met prodomain disassembles dendritic spines and eliminates synapses in hippocampal neurons. In vivo, ventral CA1 (vCA1) hippocampal neurons undergo similar morphological changes dependent on their transient co-expression of a SorCS2/p75NTR receptor complex during peri-adolescence. BDNF Met prodomain infusion into the vCA1 during this developmental time frame reduces dendritic spine density and prelimbic (PL) projections, impairing cued fear extinction. Adolescent BdnfMet/Met mice display similar spine and PL innervation deficits. Using fiber photometry, we found that, in wild-type mice, vCA1 neurons projecting to the PL encode extinction by enhancing neural activity in threat anticipation and rapidly subsiding their response. This adaptation is absent in BDNFMet/Met mice. We conclude that the BDNF Met prodomain renders vCA1-PL projection neurons underdeveloped, preventing their capacity for subsequent circuit modulation necessary for fear extinction. VIDEO ABSTRACT.
Project description:The fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown. In this context, neurotrophins, like Brain-Derived Neurotrophic Factor (BDNF), are among promising candidates. Specifically BDNF-TrkB receptor signaling is crucial for activity-dependent strengthening of synapses in different brain regions. BDNF application has been shown to positively modulate dendritic and spine architecture in cortical and hippocampal neurons as well as structural plasticity in vitro. However, a global BDNF deprivation throughout the central nervous system (CNS) resulted in very mild structural alterations of dendritic spines, questioning the relevance of the endogenous BDNF signaling in modulating the development and the mature structure of neurons in vivo. Here we show that a loss-of-function approach, blocking BDNF results in a significant reduction in dendritic spine density, associated with an increase in spine length and a decrease in head width. These changes are associated with a decrease in F-actin levels within spine heads. On the other hand, a gain-of-function approach, applying exogenous BDNF, could not reproduce the increase in spine density or the changes in spine morphology previously described. Taken together, we show here that the effects exerted by BDNF on the dendritic architecture of hippocampal neurons are dependent on the neuron's maturation stage. Indeed, in mature hippocampal neurons in vitro as shown in vivo BDNF is specifically required for the activity-dependent maintenance of the mature spine phenotype.
Project description:Many lines of evidence suggest that memory in the mammalian brain is stored with distinct spatiotemporal patterns. Despite recent progresses in identifying neuronal populations involved in memory coding, the synapse-level mechanism is still poorly understood. Computational models and electrophysiological data have shown that functional clustering of synapses along dendritic branches leads to nonlinear summation of synaptic inputs and greatly expands the computing power of a neural network. However, whether neighbouring synapses are involved in encoding similar memory and how task-specific cortical networks develop during learning remain elusive. Using transcranial two-photon microscopy, we followed apical dendrites of layer 5 pyramidal neurons in the motor cortex while mice practised novel forelimb skills. Here we show that a third of new dendritic spines (postsynaptic structures of most excitatory synapses) formed during the acquisition phase of learning emerge in clusters, and that most such clusters are neighbouring spine pairs. These clustered new spines are more likely to persist throughout prolonged learning sessions, and even long after training stops, than non-clustered counterparts. Moreover, formation of new spine clusters requires repetition of the same motor task, and the emergence of succedent new spine(s) accompanies the strengthening of the first new spine in the cluster. We also show that under control conditions new spines appear to avoid existing stable spines, rather than being uniformly added along dendrites. However, succedent new spines in clusters overcome such a spatial constraint and form in close vicinity to neighbouring stable spines. Our findings suggest that clustering of new synapses along dendrites is induced by repetitive activation of the cortical circuitry during learning, providing a structural basis for spatial coding of motor memory in the mammalian brain.
Project description:Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function. Using super-resolution microscopy, we reveal that Neogenin is highly organized on the spine membrane at the nanoscale level. We show that Neogenin binding to the WRC promotes co-clustering into nanodomains in response to brain-derived neurotrophic factor (BDNF), indicating that nanoclustering occurs in response to synaptic stimulation. Disruption of Neogenin/WRC binding not only prevents BDNF-mediated actin remodeling but also inhibits BDNF-induced calcium signaling. We conclude that the assembly of Neogenin/WRC nanodomains is a prerequisite for BDNF-mediated structural and synaptic plasticity.