Project description:Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.
Project description:African swine fever virus (ASFV) encodes more than 150 proteins, which establish complex interactions with the host for the benefit of the virus in order to evade the host's defenses. However, currently, there is still a lack of information regarding the roles of the viral proteins in host cells. Here, our data demonstrated that ASFV structural protein p17 exerts a negative regulatory effect on cGAS-STING signaling pathway and the STING signaling dependent anti-HSV1 and anti-VSV functions. Further, the results indicated that ASFV p17 was located in ER and Golgi apparatus, and interacted with STING. ASFV p17 could interfere the STING to recruit TBK1 and IKKϵ through its interaction with STING. It was also suggested that the transmembrane domain (amino acids 39-59) of p17 is required for interacting with STING and inhibiting cGAS-STING pathway. Additionally, with the p17 specific siRNA, the ASFV induced IFN-β, ISG15, ISG56, IL-6 and IL-8 gene transcriptions were upregulated in ASFV infected primary porcine alveolar macrophages (PAMs). Taken together, ASFV p17 can inhibit the cGAS-STING pathway through its interaction with STING and interference of the recruitment of TBK1 and IKKϵ. Our work establishes the role of p17 in the immune evasion and thus provides insights on ASFV pathogenesis.
Project description:Pseudorabies virus (PRV), a swine alphaherpesvirus, is a double-stranded DNA virus. It may infect various animals, especially pigs. PRV infection in pigs leads to high mortality rates, and causes huge economic lose for swine industry. Currently, there are few effective antiviral treatments available. Rosmarinic acid (RA), a hydrophilic phenolic compound, shows potential for inhibiting herpes simplex virus. Given that PRV is a member of the Herpesviridae family, this study investigated the antiviral effects of RA against PRV infection through both in vitro and in vivo, as well as the underlying molecular mechanisms. PK-15 cells were used to assess the cytotoxicity of RA in vitro, followed by an investigation of its anti-PRV activity. The study then explored how RA regulates the cGAS-STING signaling pathway, along with inflammatory and apoptotic factors in PRV-infected cells. Molecular docking and dynamics simulations further elucidated the binding interactions between RA and cGAS-STING, providing insight into how RA activates the cGAS-STING pathway against PRV infection. In vivo, the antiviral efficacy of RA was evaluated in a PRV-infected mouse model by assessing tissue viral genome copies, the innate immune cGAS-STING signaling pathway activation, and inflammatory and apoptotic responses. The results showed that RA exhibited a half-maximal cytotoxic concentration (CC50) of 26.23 µg/mL on PK-15 cells and a half-maximal inhibitory concentration (IC50) of 0.84 µg/mL against PRV, resulting in a selectivity index (SI) of 31.22. These findings suggest that RA is a highly effective and low-toxicity compound. RA significantly inhibited PRV adsorption, penetration, and replication within cells. Additionally, while PRV infection suppresses the cGAS-STING signaling pathway, RA treatment activates the innate immune response, enhances downstream antiviral effector IFN-β expression, and reduces inflammation and apoptosis in PRV-infected cells. Molecular docking results showed that the docking scores of cGAS_RA and STING_RA complexes were both less than - 5 kcal/mol, suggesting that RA binds well to cGAS and STING proteins. Molecular dynamics simulations, including RMSD, RMSF, and MM-GBSA analyses, confirmed the high binding stability of cGAS with RA, further validating the potential activity of RA as a cGAS agonist. In vivo studies revealed that RA dramatically lowered viral genome copies in various organs, activated the cGAS-STING signaling pathway, inhibited PRV-induced inflammation and apoptosis, alleviated clinical symptoms, and decreased mortality rate in PRV-infected mice. Overall, RA significantly inhibited PRV proliferation in vitro and in vivo, effectively reduced inflammation and apoptosis, and decreased the mortality rate in infected mice. The study supports the development of RA as an antiviral drug and emphasizes its potential as a candidate for PRV therapy.
Project description:The innate immune DNA sensing cGAS-STING signaling pathway has been widely recognized for inducing interferons (IFNs) and subsequent antiviral state. In addition to IFN, the cGAS-STING pathway also elicits other cell autonomous immunity events including autophagy and apoptosis. However, the downstream signaling events of this DNA sensing pathway in livestock have not been well defined. Here, we systematically analyzed the porcine STING (pSTING) induced IFN, autophagy and apoptosis, revealed the distinct dynamics of three STING downstream events, and established the IFN independent inductions of autophagy and apoptosis. Further, we investigated the regulation of autophagy on pSTING induced IFN and apoptosis. Following TBK1-IRF3-IFN activation, STING induced Atg5/Atg16L1 dependent autophagy through LIR motifs. In turn, the autophagy likely promoted the pSTING degradation, inhibited both IFN production and apoptosis, and thus restored the cell homeostasis. Therefore, this study sheds lights on the molecular mechanisms of innate immunity in pigs.
Project description:F-box only protein 38 (FBXO38) is a member of the F-box family that mediates the ubiquitination and proteasome degradation of programmed death 1 (PD-1), and thus has important effects on T cell-related immunity. While its powerful role in adaptive immunity has attracted much attention, its regulatory roles in innate immune pathways remain unknown. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an important innate immune pathway that regulates type I interferons. STING protein is the core component of this pathway. In this study, we identified that FBXO38 deficiency enhanced tumor proliferation and reduced tumor CD8+ T cells infiltration. Loss of FBXO38 resulted in reduced STING protein levels in vitro and in vivo, further leading to preventing cGAS-STING pathway activation, and decreased downstream product IFNA1 and CCL5. The mechanism of reduced STING protein was associated with lysosome-mediated degradation rather than proteasomal function. Our results demonstrate a critical role for FBXO38 in the cGAS-STING pathway.
Project description:The intestinal mucosa is constantly exposed to commensal microbes, opportunistic pathogens, toxins, luminal components and other environmental stimuli. The intestinal mucosa consists of multiple differentiated cellular and extracellular components that form a critical barrier, but is also equipped for efficient absorption of nutrients. Combination of genetic susceptibility and environmental factors are known as critical components involved in the pathogenesis of intestinal diseases. The innate immune system plays a critical role in the recognition and elimination of potential threats by detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This host defense is facilitated by pattern recognition receptors (PRRs), in which the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has gained attention due to its role in sensing host and foreign double-stranded DNA (dsDNA) as well as cyclic dinucleotides (CDNs) produced by bacteria. Upon binding with dsDNA, cGAS converts ATP and GTP to cyclic GMP-AMP (cGAMP), which binds to STING and activates TANK binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), inducing type I interferon (IFN) and nuclear factor kappa B (NF-κB)-mediated pro-inflammatory cytokines, which have diverse effects on innate and adaptive immune cells and intestinal epithelial cells (IECs). However, opposite perspectives exist regarding the role of the cGAS-STING pathway in different intestinal diseases. Activation of cGAS-STING signaling is associated with worse clinical outcomes in inflammation-associated diseases, while it also plays a critical role in protection against tumorigenesis and certain infections. Therefore, understanding the context-dependent mechanisms of the cGAS-STING pathway in the physiopathology of the intestinal mucosa is crucial for developing therapeutic strategies targeting the cGAS-STING pathway. This review aims to provide insight into recent findings of the protective and detrimental roles of the cGAS-STING pathway in intestinal diseases.
Project description:Copper-mediated programmed cell death, which influences the regulation of tumor progression, is an effective approach for antitumor molecular therapy. Unlike apoptosis, copper complex-induced cuproptosis by lipid-acylated protein aggregation triggers the mitochondrial proteotoxic stress response, which could be associated with immunomodulation. However, it remains a great challenge to understand the distinctive molecular mechanisms that presumably activate immunity by cuproptosis. Here, the new nonlabeling fluorescent molecular tools of Cu-DPPZ-Py+ and Cu-DPPZ-Ph are synthesized and used to investigate the differential immune signaling mechanisms induced by copper-mediated cuproptosis or apoptosis. With Cu-DPPZ-Py+ and Cu-Elesclomol, there is strong evidence that the triggering cuproptosis significantly drives mitochondrial DNA (mtDNA) release to activate innate immunity via cyclic GMP-AMP synthase-stimulation of interferon genes (cGAS-STING), which can improve T cell antitumor immunity in vivo. By contrast, it is observed that Cu-DPPZ-Ph treated tumor cells could release intracellular caspase-3, resulting in apoptosis-associated immunosuppression. This study supports insights into how cuproptosis bridges cGAS-STING immune pathways, contributing to the development of cuproptosis-based antitumor immunotherapy.
Project description:Brucellosis is a zoonotic disease caused by Gram-negative bacteria. Most of the brucellosis vaccines in the application are whole-bacteria vaccines. Live-attenuated vaccines are widely used for brucellosis prevention in sheep, goats, pigs, and cattle. Thus, there is also a need for an adjuvanted vaccine for human brucellosis, because the attenuated Brucella vaccines now utilized in animals cause human illness. Here, we developed a live-attenuated Brucella suis strain 2 vaccine (S2) adjuvanted with Ag85a (Ag85a-S2). We found that Ag85a-S2 activated cGAS-STING pathways both in intestinal mucosal cells in vivo and in the BMDM and U937 cell line in vitro. We demonstrated that the cGAS knockout significantly downregulated the abundance of interferon and other cytokines induced by Ag85a-S2. Moreover, Ag85a-S2 triggered a stronger cellular immune response compared to S2 alone. In sum, Ag85a-S2-mediated enhancement of immune responses was at least partially dependent on the cGAS-STING pathway. Our results provide a new candidate for preventing Brucella pathogens from livestock, which might reduce the dosage and potential toxicity compared to S2.
Project description:Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Project description:Multiple cancer immunotherapies including chimeric antigen receptor T cell and immune checkpoint inhibitors (ICIs) have been successfully developed to treat various cancers by motivating the adaptive anti-tumor immunity. Particularly, the checkpoint blockade approach has achieved great clinic success as evidenced by several U.S. Food and Drug Administration (FDA)-approved anti-programmed death receptor 1/ligand 1 or anti-cytotoxic T lymphocyte associated protein 4 antibodies. However, the majority of cancers have low clinical response rates to these ICIs due to poor tumor immunogenicity. Indeed, the cyclic guanosine monophosphate-adenosine monophosphate synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS‒STING‒TBK1) axis is now appreciated as the major signaling pathway in innate immune response across different species. Aberrant signaling of this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection and cancers. In this perspective, we provide an updated review on the latest progress on the development of small molecule modulators targeting the cGAS‒STING‒TBK1 signaling pathway and their preclinical and clinical use as a new immune stimulatory therapy. Meanwhile, highlights on the clinical candidates, limitations and challenges, as well as future directions in this field are also discussed. Further, small molecule inhibitors targeting this signaling axis and their potential therapeutic use for various indications are discussed as well.