Project description:Species of Diaporthe have been reported as plant endophytes, pathogens and saprobes on a wide range of plant hosts. Strains of Diaporthe were isolated from leaf spots of Smilaxglabra and dead culms of Xanthiumstrumarium in China, and identified based on morphology and molecular phylogenetic analyses of combined internal transcribed spacer region (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) loci. As a result, two new species named Diaportherizhaoensis and D.smilacicola are identified, described and illustrated in the present study.
Project description:Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. During trips to collect forest pathogens in Beijing, Jiangxi, Shaanxi and Zhejiang Provinces in China, 16 isolates of Diaporthe were obtained from branch cankers and leaf spots. These isolates were studied by applying a polyphasic approach including morphological, cultural data, and phylogenetic analyses of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef-1α) and β-tubulin (tub2) loci. Results revealed four new taxa, D.celticola, D.meliae, D.quercicola, D.rhodomyrti spp. nov. and two known species, D.eres and D.multiguttulata.
Project description:Diaporthe species are known as endophytes, saprobes and pathogens infecting a wide range of plants and resulting in important crop diseases. In the present study, four strains of Diaporthe were obtained from diseased leaves of Bauhiniavariegata in Guangdong Province, China. Phylogenetic analyses were conducted to identify these strains using five gene regions: internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-α (tef1) and β-tubulin (tub2). The results combined with morphology revealed two new species of Diaporthe named D.bauhiniicola in D.arecae species complex and D.guangzhouensis in D.sojae species complex.
Project description:The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.
Project description:The genus Diaporthe (Diaporthaceae, Diaporthales) comprises endophytes, pathogens and saprophytes, inhabiting a wide range of woody hosts and resulting in serious canker disease. To determine the diversity of Diaporthe species associated with canker disease of host plants in Beijing, China, a total of 35 representative strains were isolated from 18 host genera. Three novel species (D.changpingensis, D.diospyrina and D.ulmina) and four known species (D.corylicola, D.donglingensis, D.eres and D.rostrata) were identified, based on morphological comparison and phylogenetic analyses using partial ITS, cal, his3, tef1-α and tub2 loci. These results provide an understanding of the taxonomy of Diaporthe species associated with canker diseases in Beijing, China.
Project description:Diaporthe (Diaporthaceae, Diaporthales) is a common fungal genus inhabiting plant tissues as endophytes, pathogens and saprobes. Some species are reported from tree branches associated with canker diseases. In the present study, Diaporthe samples were collected from Alnusglutinosa, Fraxinusexcelsior and Quercusrobur in Utrecht, the Netherlands. They were identified to species based on a polyphasic approach including morphology, pure culture characters, and phylogenetic analyses of a combined matrix of partial ITS, cal, his3, tef1 and tub2 gene regions. As a result, four species (viz. Diaporthepseudoalnea sp. nov. from Alnusglutinosa, Diaporthesilvicola sp. nov. from Fraxinusexcelsior, D.foeniculacea and D.rudis from Quercusrobur) were revealed from tree branches in the Netherlands. Diaporthepseudoalnea differs from D.eres (syn. D.alnea) by its longer conidiophores. Diaporthesilvicola is distinguished from D.fraxinicola and D.fraxini-angustifoliae by larger alpha conidia.
Project description:Diaporthe species (Sordariomycetes, Diaporthales) are often reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. In this study, Diaporthe specimens were collected from symptomatic twigs and branches at the Huoditang Forest Farm in Shaanxi Province, China. Identification was done using a combination of morphology and comparison of DNA sequence data of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions. Three new Diaporthe species are proposed: D. albosinensis, D. coryli and D. shaanxiensis. All species are illustrated and their morphology and phylogenetic relationships with other Diaporthe species are discussed.
Project description:Diaporthe species have often been reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. Although several Diaporthe species have been recorded, little is known about species able to infect forest trees in Jiangxi Province. Hence, extensive surveys were recently conducted in Jiangxi Province, China. A total of 24 isolates were identified and analysed using comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions, as well as their morphological features. Results revealed five novel taxa, D. bauhiniae, D. ganzhouensis, D. schimae, D. verniciicola, D. xunwuensis spp. nov. and three known species, D. apiculatum, D. citri and D. multigutullata.
Project description:Two new species of the genus Verruconis, V.hainanensis and V.pseudotricladiata, were described using combined morphological and DNA sequence data. The DNA sequences of respective strains including nuclear ribosomal DNA genes (nuSSU, ITS, nuLSU) and fragments of three protein-coding genes (ACT1, BT2, TEF1) were sequenced and compared with those from closely-related species to genera Ochroconis and Verruconis (Family Sympoventuriaceae, Order Venturiales). Morphologically, both species showed typical ampulliform conidiophores and conidiogenous cells, features not seen in other species of Verruconis. The conidia of V.hainanensis are fusiform and those of V.pseudotricladiata are Y or T shaped, similar to old members of a closely-related genus Scolecobasidium. The addition of these two new species provides a new perspective on the heterogeneity of Scolecobasidium.
Project description:Sweet cherry is an important fruit crop in China with a high economic value. From 2019 to 2020, a leaf spot disease was reported, with purplish-brown circular lesions in three cultivating regions in China. Twenty-four Fusarium isolates were obtained from diseased samples and were identified based on morphological characteristics and multi-locus phylogenetic analyses. Seven species, including F. luffae (7 isolates), F. lateritium (6 isolates), F. compactum (5 isolates), F. nygamai (2 isolates), F. citri (2 isolates), F. ipomoeae (1 isolate) and F. curvatum (1 isolate) were identified. The pathogenicity test showed that analyzed strains of all species could produce lesions on detached cherry leaves. Therefore, Fusarium was proved to be a pathogen of cherry leaf spots in China. This is the first report of F. luffae, F. compactum, F. nygamai, F. citri, F. ipomoeae and F. curvatum on sweet cherry in China.