Project description:BackgroundGenetic variants can contribute differently to trait heritability by their functional categories, and recent studies have shown that incorporating functional annotation can improve the predictive performance of polygenic risk scores (PRSs). In addition, when only a small proportion of variants are causal variants, PRS methods that employ a Bayesian framework with shrinkage can account for such sparsity. It is possible that the annotation group level effect is also sparse. However, the number of PRS methods that incorporate both annotation information and shrinkage on effect sizes is limited. We propose a PRS method, PRSbils, which utilizes the functional annotation information with a bilevel continuous shrinkage prior to accommodate the varying genetic architectures both on the variant-specific level and on the functional annotation level.ResultsWe conducted simulation studies and investigated the predictive performance in settings with different genetic architectures. Results indicated that when there was a relatively large variability of group-wise heritability contribution, the gain in prediction performance from the proposed method was on average 8.0% higher AUC compared to the benchmark method PRS-CS. The proposed method also yielded higher predictive performance compared to PRS-CS in settings with different overlapping patterns of annotation groups and obtained on average 6.4% higher AUC. We applied PRSbils to binary and quantitative traits in three real world data sources (the UK Biobank, the Michigan Genomics Initiative (MGI), and the Korean Genome and Epidemiology Study (KoGES)), and two sources of annotations: ANNOVAR, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG), and demonstrated that the proposed method holds the potential for improving predictive performance by incorporating functional annotations.ConclusionsBy utilizing a bilevel shrinkage framework, PRSbils enables the incorporation of both overlapping and non-overlapping annotations into PRS construction to improve the performance of genetic risk prediction. The software is available at https://github.com/styvon/PRSbils .
Project description:Identification of driver genes, whose mutations cause the development of tumors, is crucial for the improvement of cancer research and precision medicine. To overcome the problem that the traditional frequency-based methods cannot detect lowly recurrently mutated driver genes, researchers have focused on the functional impact of gene mutations and proposed the function-based methods. However, most of the function-based methods estimate the distribution of the null model through the non-parametric method, which is sensitive to sample size. Besides, such methods could probably lead to underselection or overselection results. In this study, we proposed a method to identify driver genes by using functional impact prediction neural network (FI-net). An artificial neural network as a parametric model was constructed to estimate the functional impact scores for genes, in which multi-omics features were used as the multivariate inputs. Then the estimation of the background distribution and the identification of driver genes were conducted in each cluster obtained by the hierarchical clustering algorithm. We applied FI-net and other 22 state-of-the-art methods to 31 datasets from The Cancer Genome Atlas project. According to the comprehensive evaluation criterion, FI-net was powerful among various datasets and outperformed the other methods in terms of the overlap fraction with Cancer Gene Census and Network of Cancer Genes database, and the consensus in predictions among methods. Furthermore, the results illustrated that FI-net can identify known and potential novel driver genes.
Project description:MotivationChIP-chip has been widely used for various genome-wide biological investigations. Given the small number of replicates (typically two to three) per biological sample, methods of analysis that control the variance are desirable but in short supply. We propose a double error shrinkage (DES) method by using moving average statistics based on local-pooled error estimates which effectively control both heterogeneous error variances and correlation structures of an extremely large number of individual probes on tiling arrays.ResultsApplying DES to ChIP-chip tiling array study for discovering genome-wide protein-binding sites, we identified 8400 target regions that include highly likely TFIID binding sites. About 33% of these were well matched with the known transcription starting sites on the DBTSS library, while many other newly identified sites have a high chance to be real binding sites based on a high positive predictive value of DES. We also showed the superior performance of DES compared with other commonly used methods for detecting actual protein binding sites.
Project description:The notion that relationships between community-weighted mean (CWM) traits (i.e. plot-level trait values weighted by species abundances) and environmental conditions reflect selection towards locally optimal phenotypes is challenged by the large amount of interspecific trait variation typically found within ecological communities. Reconciling these contrasting patterns is a key to advancing predictive theories of functional community ecology. We combined data on geographical distributions and three traits (wood density, leaf mass per area and maximum height) of 173 tree species in Puerto Rico. We tested the hypothesis that species are more likely to occur where their trait values are more similar to the local CWM trait values (the'CWM-optimality' hypothesis) by comparing species occurrence patterns (as a proxy for fitness) with the functional composition of forest plots across a precipitation gradient. While 70% of the species supported CWM-optimality for at least one trait, nearly 25% significantly opposed it for at least one trait, thereby contributing to local functional diversity. The majority (85%) of species that opposed CWM-optimality did so only for one trait and few species opposed CWM-optimality in multivariate trait space. Our study suggests that constraints to local functional variation act more strongly on multivariate phenotypes than on univariate traits.
Project description:As the current worldwide outbreaks of the SARS-CoV-2, it is urgently needed to develop effective therapeutic agents for inhibiting the pathogens or treating the related diseases. Antimicrobial peptides (AMP) with functional activity against coronavirus could be a considerable solution, yet there is no research for identifying anti-coronavirus (anti-CoV) peptides with the computational approach. In this study, we first investigated the physiochemical and compositional properties of the collected anti-CoV peptides by comparing against three other negative sets: antivirus peptides without anti-CoV function (antivirus), regular AMP without antivirus functions (non-AVP) and peptides without antimicrobial functions (non-AMP). Then, we established classifiers for identifying anti-CoV peptides between different negative sets based on random forest. Imbalanced learning strategies were adopted due to the severe class-imbalance within the datasets. The geometric mean of the sensitivity and specificity (GMean) under the identification from antivirus, non-AVP and non-AMP reaches 83.07%, 85.51% and 98.82%, respectively. Then, to pursue identifying anti-CoV peptides from broad-spectrum peptides, we designed a double-stages classifier based on the collected datasets. In the first stage, the classifier characterizes AMPs from regular peptides. It achieves an area under the receiver operating curve (AUCROC) value of 97.31%. The second stage is to identify the anti-CoV peptides between the combined negatives of other AMPs. Here, the GMean of evaluation on the independent test set is 79.42%. The proposed approach is considered as an applicable scheme for assisting the development of novel anti-CoV peptides. The datasets and source codes used in this study are available at https://github.com/poncey/PreAntiCoV.
Project description:Aside from pathogenesis, bacterial toxins also have been used for medical purpose such as drugs for cancer and immune diseases. Correctly identifying bacterial toxins and their types (endotoxins and exotoxins) has great impact on the cell biology study and therapy development. However, experimental methods for bacterial toxins identification are time-consuming and labor-intensive, implying an urgent need for computational prediction. Thus, we are motivated to develop a method for computational identification of bacterial toxins based on amino acid sequences and functional domain information. In this study, a nonredundant dataset of 167 bacterial toxins including 77 exotoxins and 90 endotoxins is adopted to learn the predictive model by using support vector machines (SVMs). The cross-validation evaluation shows that the SVM models trained with amino acids and dipeptides composition could yield an accuracy of 96.07% and 92.50%, respectively. For discriminating endotoxins from exotoxins, the SVM models trained with amino acids and dipeptides composition have achieved an accuracy of 95.71% and 92.86%, respectively. After incorporating functional domain information, the predictive performance is further improved. The proposed method has been demonstrated to be able to more effectively identify and classify bacterial toxins than the other two features on independent dataset, which may aid in bacterial biomedical development.
Project description:Regulation of pre-mRNA splicing is achieved through the interaction of RNA sequence elements and a variety of RNA-splicing related proteins (splicing factors). The splicing machinery in humans is not yet fully elucidated, partly because splicing factors in humans have not been exhaustively identified. Furthermore, experimental methods for splicing factor identification are time-consuming and lab-intensive. Although many computational methods have been proposed for the identification of RNA-binding proteins, there exists no development that focuses on the identification of RNA-splicing related proteins so far. Therefore, we are motivated to design a method that focuses on the identification of human splicing factors using experimentally verified splicing factors. The investigation of amino acid composition reveals that there are remarkable differences between splicing factors and non-splicing proteins. A support vector machine (SVM) is utilized to construct a predictive model, and the five-fold cross-validation evaluation indicates that the SVM model trained with amino acid composition could provide a promising accuracy (80.22%). Another basic feature, amino acid dipeptide composition, is also examined to yield a similar predictive performance to amino acid composition. In addition, this work presents that the incorporation of evolutionary information and domain information could improve the predictive performance. The constructed models have been demonstrated to effectively classify (73.65% accuracy) an independent data set of human splicing factors. The result of independent testing indicates that in silico identification could be a feasible means of conducting preliminary analyses of splicing factors and significantly reducing the number of potential targets that require further in vivo or in vitro confirmation.
Project description:We introduce a new shrinkage prior on function spaces, called the functional horseshoe prior (fHS), that encourages shrinkage towards parametric classes of functions. Unlike other shrinkage priors for parametric models, the fHS shrinkage acts on the shape of the function rather than inducing sparsity on model parameters. We study the efficacy of the proposed approach by showing an adaptive posterior concentration property on the function. We also demonstrate consistency of the model selection procedure that thresholds the shrinkage parameter of the functional horseshoe prior. We apply the fHS prior to nonparametric additive models and compare its performance with procedures based on the standard horseshoe prior and several penalized likelihood approaches. We find that the new procedure achieves smaller estimation error and more accurate model selection than other procedures in several simulated and real examples. The supplementary material for this article, which contains additional simulated and real data examples, MCMC diagnostics, and proofs of the theoretical results, is available online.
Project description:The iterative shrinkage-thresholding algorithm (ISTA) is a classic optimization algorithm for solving ill-posed linear inverse problems. Recently, this algorithm has continued to improve, and the iterative weighted shrinkage-thresholding algorithm (IWSTA) is one of the improved versions with a more evident advantage over the ISTA. It processes features with different weights, making different features have different contributions. However, the weights of the existing IWSTA do not conform to the usual definition of weights: their sum is not 1, and they are distributed over an extensive range. These problems may make it challenging to interpret and analyze the weights, leading to inaccurate solution results. Therefore, this paper proposes a new IWSTA, namely, the entropy-regularized IWSTA (ERIWSTA), with weights that are easy to calculate and interpret. The weights automatically fall within the range of [0, 1] and are guaranteed to sum to 1. At this point, considering the weights as the probabilities of the contributions of different attributes to the model can enhance the interpretation ability of the algorithm. Specifically, we add an entropy regularization term to the objective function of the problem model and then use the Lagrange multiplier method to solve the weights. Experimental results of a computed tomography (CT) image reconstruction task show that the ERIWSTA outperforms the existing methods in terms of convergence speed and recovery accuracy.
Project description:One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. xGW-GAT predicts the multi-class gait impairment on the MDS Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, xGW-GAT identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT .