Project description:Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs. Since the inception of the field several decades ago, regenerative medicine therapies, namely stem cells, have received significant attention in preclinical studies and clinical trials. Apart from their known potential for differentiation into the various body cells, stem cells enhance the organ's intrinsic regenerative capacity by altering its environment, whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration. Recently, research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardiovascular diseases' morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy. This review will discuss the nature of each of the CSCs/CPCs, their environment, their interplay with other cells, and their metabolism. In addition, important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells. Moreover, the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration. Finally, the novel role of nanotechnology in cardiac regeneration will be explored.
Project description:Banana is an important food crop responsible for ensuring food security, nutrition, and employment for a significant portion of the world population. It has fairly broad genetic diversity and is distributed widely across the globe. Due to its socio-economic importance, there has been growing demand for healthy and improved planting materials of banana. In recent years many companies and organizations are working hard to narrow down the gap between demand and supply of quality planting materials. The other challenges includes its susceptibility to adverse environmental conditions, attack of various pests/pathogens and improvement of nutritional quality of bananas. To address these issues, refinement of existing techniques and introduction of new experimental tools are required. However, the genetic improvement of bananas to a large extent is limited by using conventional methods due to polyploidy, heterozygosity, and sterility of this plant. For rapid multiplication and obtaining disease free and healthy plants, efficient in vitro propagation techniques and fine tuning of the existing protocols are being tried in many laboratories across the globe. Besides, for developing a successful protocol for propagation of different cultivars of bananas, a deeper understanding of the factors associated with various steps of its multiplication till transfer to the land is immensely critical. Similarly, developing biotic and abiotic stress tolerant banana and enhancing its commercial value through biotechnological interventions could be very useful. The key intent of this review is to highlight the research endeavor in this direction, associated challenges and future prospects.
Project description:BackgroundWhile there is a growing body of literature supporting clinical decision-making for rehabilitation professionals, suboptimal use of evidence-based practices in that field persists. A strategic initiative that ensures the relevance of the research and its implementation in the context of rehabilitation could 1) help improve the coordination of knowledge translation (KT) research and 2) enhance the delivery of evidence-based rehabilitation services offered to patients with physical disabilities. This paper describes the process and methods used to develop a KT strategic initiative aimed at building capacity and coordinating KT research in physical rehabilitation and its strategic plan; it also reports the initial applications of the strategic plan implementation.MethodsWe used a 3-phase process consisting of an online environmental scan to identify the extent of KT research activities in physical rehabilitation in Quebec, Canada. Data from the environmental scan was used to develop a strategic plan that structures KT research in physical rehabilitation. Seven external KT experts in health science reviewed the strategic plan for consistency and applicability.ResultsSixty-four KT researchers were identified and classified according to the extent of their level of involvement in KT. Ninety-six research projects meeting eligibility criteria were funded by eight of the fourteen agencies and organizations searched. To address the identified gaps, a 5-year strategic plan was developed, containing a mission, a vision, four main goals, nine strategies and forty-two actions.ConclusionSuch initiatives can help guide researchers and relevant key stakeholders, to structure, organize and advance KT research in the field of rehabilitation. The strategies are being implemented progressively to meet the strategic initiative's mission and ultimately enhance users' rehabilitation services.
Project description:Background: Gene editing tools using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related systems have revolutionized our understanding of cancer. The purpose of this study was to determine the distribution, collaboration, and direction of cancer research using CRISPR. Methods: Data from the Web of Science (WoS) Core Collection database were collected from 4,408 cancer publications related to CRISPR from 1 January 2013to 31 December 2022. The obtained data were analyzed using VOSviewer software for citation, co-citation, co-authorship, and co-occurrence analysis. Results: The number of annual publications has grown steadily over the past decade worldwide. The United States was shown, by far, to be the leading source of cancer publications, citations, and collaborations involving CRISPR than any other country, followed by China. Li Wei (Jilin University, China), and Harvard Medical School (Boston, MA, United States) were the author and institution with the most publications and active collaborations, respectively. The journal with the most contributions was Nature Communications (n = 147) and the journal with the most citations was Nature (n = 12,111). The research direction of oncogenic molecules, mechanisms, and cancer-related gene editing was indicated based on keyword analysis. Conclusion: The current study has provided a comprehensive overview of cancer research highlights and future trends of CRISPR, combined with a review of CRISPR applications in cancer to summarize and predict research directions and provide guidance to researchers.
Project description:To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.
Project description:Colorectal cancer (CRC) is a leading cause of death worldwide, despite progress made in detection and management through surgery, chemotherapy, radiotherapy, and immunotherapy. Novel therapeutic agents have improved survival in both the adjuvant and advanced disease settings, albeit with an increased risk of toxicity and cost. However, metastatic disease continues to have a poor long-term prognosis and significant challenges remain due to late stage diagnosis and treatment failure. Biomarkers are a key tool in early detection, prognostication, survival, and predicting treatment response. The past three decades have seen advances in genomics and molecular pathology of cancer biomarkers, allowing for greater individualization of therapy with a positive impact on survival outcomes. Clinically useful predictive biomarkers aid clinical decision making, such as the presence of KRAS gene mutations predicting benefit from epidermal growth factor receptor (EGFR) inhibiting antibodies. However, few biomarkers have been translated into clinical practice highlighting the need for further investigation. We review a range of protein, DNA and RNA-based biomarkers under investigation for diagnostic, predictive, and prognostic properties for CRC. In particular, long non-coding RNAs (lncRNA), have been investigated as biomarkers in a range of cancers including colorectal cancer. Specifically, we evaluate the potential role of lncRNA plasmacytoma variant translocation 1 (PVT1), an oncogene, as a diagnostic, prognostic, and therapeutic biomarker in colorectal cancer.
Project description:Idiosyncratic drug-induced liver injury (DILI) remains an important clinical problem, both during drug development and the prescription of a range of licensed drugs. Although rare, the consequences are serious. Ongoing studies on genetic risk factors for DILI, especially genomewide association studies, have resulted in the identification of a number of genetic risk factors, including particular HLA alleles and a few non-HLA genes, both immune-related and metabolic. Some non-HLA associations, such as N-acetyltransferase 2 in isoniazid DILI and interferon regulatory factor 6 in interferon-beta DILI are likely to be drug-specific due to the role of the associated gene, but there is also evidence for polygenic susceptibility involving pathways such as oxidative and endoplasmic reticulum stress and mitochondrial function for DILI induced by multiple drugs. Increased knowledge of genetic risk factors should assist in better understanding underlying DILI mechanisms and help improve methods for identifying hepatotoxic drugs early in development. HLA allele-specific T cell proliferation together with in silico prediction of drug binding to specific HLA proteins have confirmed genetic findings for certain common causes of DILI. However, studies in hepatocytes exposed to high drug concentrations suggest toxicity that is not dependent on genotype also occurs. It seems likely that susceptibility to DILI involves several genetic risk factors combining with other factors that affect drug levels. Despite recent progress in detecting genetic risk factors for DILI, low positive predictive values mean that general implementation of genotyping prior to prescription of potentially hepatotoxic drugs is not useful currently.
Project description:There has been a very limited number of high-throughput screening campaigns carried out with Leishmania drug targets. In part, this is due to the small number of suitable target genes that have been shown by genetic or chemical methods to be essential for the parasite. In this perspective, we discuss the state of genetic target validation in the field of Leishmania research and review the 200 Leishmania genes and 36 Trypanosoma cruzi genes for which gene deletion attempts have been made since the first published case in 1990. We define a quality score for the different genetic deletion techniques that can be used to identify potential drug targets. We also discuss how the advances in genome-scale gene disruption techniques have been used to assist target-based and phenotypic-based drug development in other parasitic protozoa and why Leishmania has lacked a similar approach so far. The prospects for this scale of work are considered in the context of the application of CRISPR/Cas9 gene editing as a useful tool in Leishmania.
Project description:Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.
Project description:Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.