Project description:Pollinators, the cornerstones of our terrestrial ecosystem, have been at the very core of our anxiety. This is because we can nowadays observe a dangerous decline in the number of insects. With the numbers of pollinators dramatically declining worldwide, the scientific community has been growing more and more concerned about the future of insects as fundamental elements of most terrestrial ecosystems. Trying to address this issue, we looked for substances that might increase bee resistance. To this end, we checked the effects of plant-based adaptogens on honeybees in laboratory tests and during field studies on 30 honeybee colonies during two seasons. In this study, we have tested extracts obtained from: Eleutherococcus senticosus, Garcinia cambogia, Panax ginseng, Ginkgo biloba, Schisandra chinensis, and Camellia sinensis. The 75% ethanol E. senticosus root extract proved to be the most effective, both as a cure and in the prophylaxis of nosemosis. Therefore, Eleutherococcus senticosus, and its active compounds, eleutherosides, are considered the most powerful adaptogens, in the pool of all extracts that were selected for screening, for supporting immunity and improving resistance of honeybees. The optimum effective concentration of 0.4 mg/mL E. senticosus extract responded to c.a. 5.76, 2.56 and 0.07 µg/mL of eleutheroside B, eleutheroside E and naringenin, respectively. The effect of E. senticosus extracts on honeybees involved a similar adaptogenic response as on other animals, including humans. In this research, we show for the first time such an adaptogenic impact on invertebrates, i.e., the effect on honeybees stressed by nosemosis. We additionally hypothesised that these adaptogenic properties were connected with eleutherosides-secondary metabolites found exclusively in the Eleutherococcus genus and undetected in other studied extracts. As was indicated in this study, eleutherosides are very stable chemically and can be found in extracts in similar amounts even after two years from extraction. Considering the role bees play in nature, we may conclude that demonstrating the adaptogenic properties which plant extracts have in insects is the most significant finding resulting from this research. This knowledge might bring to fruition numerous economic and ecological benefits.
Project description:Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. is a medicinal plant used in Traditional Chinese Medicine (TCM) for thousands of years. However, due to the overexploitation, this species is considered to be endangered and is included in the Red List, e.g., in the Republic of Korea. Therefore, a new source of this important plant in Europe is needed. The aim of this study was to develop pharmacognostic and phytochemical parameters of the fruits. The content of polyphenols (eleutherosides B, E, E1) and phenolic acids in the different parts of the fruits, as well as tocopherols, fatty acids in the oil, and volatile constituents were studied by the means of chromatographic techniques [HPLC with Photodiode-Array Detection (PDA), headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS)]. To the best of our knowledge, no information is available on the content of eleutherosides and phenolic acids in the pericarp and seeds. The highest sum of eleutheroside B and E was detected in the whole fruits (1.4 mg/g), next in the pericarp (1.23 mg/g) and the seeds (0.85 mg/g). Amongst chlorogenic acid derivatives (3-CQA, 4-CQA, 5-CQA), 3-CQA was predominant in the whole fruits (1.08 mg/g), next in the pericarp (0.66 mg/g), and the seeds (0.076 mg/g). The oil was rich in linoleic acid (C18:3 (n-3), 18.24%), ursolic acid (35.72 mg/g), and α-tocopherol (8.36 mg/g). The presence of druses and yellow oil droplets in the inner zone of the mesocarp and chromoplasts in the outer zone can be used as anatomical markers. These studies provide a phytochemical proof for accumulation of polyphenols mainly in the pericarp, and these structures may be taken into consideration as their source subjected to extraction to obtain polyphenol-rich extracts.
Project description:Five new oleanane-type triterpenoid saponins (1-5), together with 24 known saponins (6-29) were isolated from the fruit of Acanthopanax senticosus. Their structures were determined by extensive spectroscopic analysis, including 1D, 2D nuclear magnetic resonance (NMR), and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), in combination with chemical methods (acid hydrolysis). The neuroinflammation model was established by lipopolysaccharide (LPS)-induced BV2 microglia, and the neuroprotective effects of all compounds (1-29) were evaluated.
Project description:In the past two decades public interest in herbal products has increased significantly in Europe, especially in the plant-based products from non-European traditions. Eleutherococcus senticosus has been used for the treatment of inflammatory diseases, anemia, and rheumatoid arthritis. The Eleutherococcus senticosus fruits intractum was examined for the content of phenolic acids (LC-ESI-MS/MS), minerals (AAS), TPC, and TFC (spectrophotometric assay). The antioxidant activity was determined using free radical scavenging assay and TLC-DB-DPPH∗ dot-blot test. An anti-Hyal activity was evaluated by the spectrophotometric assay method. Cytotoxicity towards HL-60, HL-60/MX1, HL-60/MX2, CEM/C1, and CCRF/CEM leukemic cell lines was done using trypan blue test. Among eight phenolic acids, trans-caffeic acid was found in the largest amount (41.2 mg/g DE). The intractum presented a high amount of macroelements (Ca, Mg, K; 1750, 1300, and 21000 mg/kg) and microelements (Fe, Mn; 32.7, 54.3 mg/kg), respectively. The content of TPC and TFC was 130 and 92 mg/g DE, respectively. The intractum showed anti-Hyal activity (2.16-60%) and an antioxidant capacity (EC50; 52 μg/mL). The intractum most strongly inhibited the growth of HL-60, HL-60/MX1, and CCRF/CEM. A better understanding of the intractum health benefits is important in order to increase its utility and enrich dietary sources of health promoting compounds.
Project description:In this work, a method based on ultra-high-performance liquid chromatography with a photodiode array detector (UPLC-PDA) was developed to comprehensively analyze phenolic compounds in peels of lime (Citrus × latifolia), lemon (Citrus limon), and rangpur lime (Citrus × limonia). The reverse-phase separation was achieved with a C18 fused-core column packed with the smallest particles commercially available (1.3 um). The method was successfully coupled with high-resolution mass spectrometry (HRMS), allowing the detection of 24 phenolic compounds and five limonoids in several other citrus peels species: key lime, orange and sweet orange, tangerine, and tangerine ponkan, proving the suitability for comprehensive analysis in citrus peel matrices. Additionally, the developed method was validated according to the Food and drug administration (FDA) and National Institute of Metrology Quality and Technology (INMETRO) criteria, demonstrating specificity, linearity, accuracy, and precision according to these guidelines. System suitability parameters such as resolution, tailoring, plate count were also verified.