Project description:BACKGROUND: It has been suggested that prenatal stress contributes to the risk of obesity later in life. In a population-based cohort study, we examined whether prenatal stress related to maternal bereavement during pregnancy was associated with the risk of overweight in offspring during school age. METHODOLOGY/PRINCIPAL FINDINGS: We followed 65,212 children born in Denmark from 1970-1989 who underwent health examinations from 7 to 13 years of age in public or private schools in Copenhagen. We identified 459 children as exposed to prenatal stress, defined by being born to mothers who were bereaved by death of a close family member from one year before pregnancy until birth of the child. We compared the prevalence of overweight between the exposed and the unexposed. Body mass index (BMI) values and prevalence of overweight were higher in the exposed children, but not significantly so until from 10 years of age and onwards, as compared with the unexposed children. For example, the adjusted odds ratio (OR) for overweight was 1.68 (95% confidence interval [CI] 1.08-2.61) at 12 years of age and 1.63 (95% CI 1.00-2.61) at 13 years of age. The highest ORs were observed when the death occurred in the period from 6 to 0 month before pregnancy (OR 3.31, 95% CI 1.71-6.42 at age 12, and OR 2.31, 95% CI 1.08-4.97 at age 13). CONCLUSIONS/SIGNIFICANCE: Our results suggest that severe pre-pregnancy stress is associated with an increased risk of overweight in the offspring in later childhood.
Project description:BackgroundMost studies on the association of in utero exposure to cigarette smoking and childhood overweight or obesity (OWO) were based on maternal self-reported smoking status, and few were based on objective biomarkers. The concordance of self-report smoking, and maternal and cord blood biomarkers of cigarette smoking as well as their effects on children's long-term risk of overweight and obesity are unclear.MethodsIn this study, we analyzed data from 2351 mother-child pairs in the Boston Birth Cohort, a sample of US predominantly Black, indigenous, and people of color (BIPOC) that enrolled children at birth and followed prospectively up to age 18 years. In utero smoking exposure was measured by maternal self-report and by maternal and cord plasma biomarkers of smoking: cotinine and hydroxycotinine. We assessed the individual and joint associations of each smoking exposure measure and maternal OWO with childhood OWO using multinomial logistic regressions. We used nested logistic regressions to investigate the childhood OWO prediction performance when adding maternal and cord plasma biomarkers as input covariates on top of self-reported data.ResultsOur results demonstrated that in utero cigarette smoking exposure defined by self-report and by maternal or cord metabolites was consistently associated with increased risk of long-term child OWO. Children with cord hydroxycotinine in the fourth quartile (vs. first quartile) had 1.66 (95% confidence interval [CI] 1.03-2.66) times the odds for overweight and 1.57 (95% CI 1.05-2.36) times the odds for obesity. The combined effect of maternal OWO and smoking on offspring risk of obesity is 3.66 (95% CI 2.37-5.67) if using self-reported smoking. Adding maternal and cord plasma biomarker information to self-reported data improved the prediction accuracy of long-term child OWO risk.ConclusionsThis longitudinal birth cohort study of US BIPOC underscored the role of maternal smoking as an obesogen for offspring OWO risk. Our findings call for public health intervention strategies to focus on maternal smoking - as a highly modifiable target, including smoking cessation and countermeasures (such as optimal nutrition) that may alleviate the increasing obesity burden in the United States and globally.
Project description:ImportanceThe first pediatric lead screening typically occurs at 1-year well-child care visits. However, data on the extent of maternal lead exposure and its long-term consequences for child health are lacking.ObjectiveTo investigate the associations between maternal red blood cell (RBC) lead levels and intergenerational risk of overweight or obesity (OWO) and whether adequate maternal folate status is associated with a reduction in OWO risk.Design, setting, and participantsProspective birth cohort study. The analysis was conducted from July 14, 2018, to August 2, 2019, at Johns Hopkins Bloomberg School of Public Health. This study included 1442 mother-child pairs recruited at birth from October 27, 2002, to October 10, 2013, and followed up prospectively at Boston Medical Center.Main outcomes and measuresChild body mass index (BMI) z score, calculated according to US national reference data, and OWO, defined as BMI at or exceeding the 85th percentile for age and sex. Maternal RBC lead levels and plasma folate levels were measured in samples obtained 24 to 72 hours after delivery; child whole-blood lead level was obtained from the first pediatric lead screening.ResultsThe mean (SD) age of mothers and children was 28.6 (6.5) years and 8.1 (3.1) years, respectively; 50.1% of children were boys. The median maternal RBC lead level and plasma folate level were 2.5 (interquartile range [IQR], 1.7-3.8) μg/dL and 32.2 (IQR, 22.1-44.4) nmol/L, respectively. The median child whole-blood lead level and child BMI z score were 1.4 (IQR, 1.4-2.0) μg/dL and 0.78 (IQR, -0.08 to 1.71), respectively. Maternal RBC lead level was associated with child OWO risk in a dose-response fashion, with an odds ratio (OR) of 1.65 (95% CI, 1.18-2.32) for high maternal RBC lead level (≥5.0 μg/dL) compared with low maternal RBC lead level (<2.0 μg/dL). Child OWO was highest among children of OWO mothers with high RBC lead levels (adjusted OR, 4.24; 95% CI, 2.64-6.82) compared with children of non-OWO mothers with low RBC lead levels. Children of OWO mothers with high RBC lead levels had 41% lower OWO risk (OR, 0.59; 95% CI, 0.36-0.95; P = .03) if their mothers had adequate plasma folate levels (≥20.4 nmol/L) compared with their counterparts.Conclusions and relevanceIn this sample of a US urban population, findings suggest that maternal elevated lead exposure was associated with increased risk of intergenerational OWO independent of postnatal blood lead levels. Adequate maternal folate status appeared to be associated with lower OWO risk. If confirmed by additional studies, these findings have implications for prenatal lead screening and management to minimize adverse health consequences on children.
Project description:Childhood obesity is linked to maternal smoking during pregnancy. Gut microbiota may partially mediate this association and could be potential targets for intervention; however, its role is understudied. We included 1,592 infants from the Canadian Healthy Infants Longitudinal Development Cohort. Data on environmental exposure and lifestyle factors were collected prenatally and throughout the first three years. Weight outcomes were measured at one and three years of age. Stool samples collected at 3 and 12 months were analyzed by sequencing the V4 region of 16S rRNA to profile microbial compositions and magnetic resonance spectroscopy to quantify the metabolites. We showed that quitting smoking during pregnancy did not lower the risk of offspring being overweight. However, exclusive breastfeeding until the third month of age may alleviate these risks. We also reported that maternal smoking during pregnancy significantly increased Firmicutes abundance and diversity. We further revealed that Firmicutes diversity mediates the elevated risk of childhood overweight and obesity linked to maternal prenatal smoking. This effect possibly occurs through excessive microbial butyrate production. These findings add to the evidence that women should quit smoking before their pregnancies to prevent microbiome-mediated childhood overweight and obesity risk, and indicate the potential obesogenic role of excessive butyrate production in early life.
Project description:The mechanism through which developmental programming of offspring overweight/obesity following in utero exposure to maternal overweight/obesity operates is unknown but may operate through biologic pathways involving offspring anthropometry at birth. Thus, we sought to examine to what extent the association between in utero exposure to maternal overweight/obesity and childhood overweight/obesity is mediated by birth anthropometry. Analyses were conducted on a retrospective cohort with data obtained from one hospital system. A natural effects model framework was used to estimate the natural direct effect and natural indirect effect of birth anthropometry (weight, length, head circumference, ponderal index, and small-for-gestational age [SGA] or large-for-gestational age [LGA]) for the association between pre-pregnancy maternal body mass index (BMI) category (overweight/obese vs normal weight) and offspring overweight/obesity in childhood. Models were adjusted for maternal and child socio-demographics. Three thousand nine hundred and fifty mother-child dyads were included in analyses (1467 [57.8%] of mothers and 913 [34.4%] of children were overweight/obese). Results suggest that a small percentage of the effect of maternal pre-pregnancy BMI overweight/obesity on offspring overweight/obesity operated through offspring anthropometry at birth (weight: 15.5%, length: 5.2%, head circumference: 8.5%, ponderal index: 2.2%, SGA: 2.9%, and LGA: 4.2%). There was a small increase in the percentage mediated when gestational diabetes or hypertensive disorders were added to the models. Our study suggests that some measures of birth anthropometry mediate the association between maternal pre-pregnancy overweight/obesity and offspring overweight/obesity in childhood and that the size of this mediated effect is small.
Project description:ObjectivePrenatal exposure to excess cortisol can affect postnatal metabolic health by epigenetic mechanisms. We aimed to investigate if prenatal exposure to pharmacological glucocorticoids increases the risk of overweight/obesity in childhood.DesignA nationwide population registry-based cohort study.MethodsWe identified 383 877 children born in Denmark (2007-2012), who underwent routine anthropometric evaluation at 5-8 years of age. Prenatal exposure to glucocorticoids was divided into systemic and topical glucocorticoids, cumulative systemic dose, and use by trimester. The comparison cohort included children without exposure, born to maternal never-users. Negative control exposures were used to investigate confounding from an underlying disease or unmeasured characteristics. Such exposures included children without glucocorticoid exposure born to maternal users of non-steroidal anti-inflammatory drugs or immunotherapy during pregnancy, maternal former users of glucocorticoids, or paternal users of glucocorticoids during the pregnancy of their partner. We estimated sex-stratified adjusted prevalence ratios (aPR) of overweight/obesity at 5-8 years of age, as epigenetic modifications have shown to be sex-specific.ResultsIn the study, 21 246 (11%) boys and 27 851 (15%) girls were overweight/obese at 5-8 years of age. Overall, neither systemic nor topical glucocorticoids were associated with overweight/obesity. In boys, high-dose systemic glucocorticoids was associated with higher prevalence of overweight/obesity vs the comparison cohort (aPR: 1.41 (95% CI: 1.07-1.86), prevalence: 16% vs 11%). Negative control exposures indicated robustness to confounding.ConclusionOverweight/obesity might be an adverse effect of prenatal exposure to high-dose systemic glucocorticoids in boys. We found no association for neither prenatal exposure to lower doses of systemic nor topical glucocorticoids. These results merit clinical attention.
Project description:The objective of the current study was to determine the proportion of adverse perinatal outcomes that could be potentially prevented if maternal obesity were to be reduced or eliminated (population attributable risk fractions, PARF); and the number needed to treat (NNT) of overweight or obese women to prevent one case of adverse perinatal outcome. Data from the Atlee Perinatal Database on 66,689 singleton infants born in Nova Scotia, Canada, between 2004 and 2014, and their mothers were used. Multivariable-adjusted PARFs and NNTs of maternal pre-pregnancy weight status were determined for various perinatal outcomes under three scenarios: If all overweight and obese women were to i) become normal weight before pregnancy; ii) shift down one weight class; or iii) lose 10% of their body weight, significant relative reductions would be seen for gestational diabetes mellitus (GDM, 57/33/15%), hypertensive disorders of pregnancy (HDP, 26/16/6%), caesarean section (CS, 18/10/3%), and large for gestational age births (LGA, 24/14/3%). The NNT were lowest for the outcomes GDM, induction of labour, CS, and LGA, where they ranged from 13 to 73. The study suggests that a substantial proportion of adverse perinatal outcomes may be preventable through reductions in maternal pre-pregnancy weight.
Project description:Women with overweight or obesity (OWOB) have an increased risk of cesarean birth, preterm birth (PTB), and high birth weight infants. Although regular exercise decreases this risk in healthy weight women, these associations have not been explored in OWOB. Women were randomized at 13-16 weeks' gestation to 150-min of moderate-intensity exercise (n = 131) or non-exercising control (n = 61). Delivery mode, gestational age (GA), and birth weight (BW) were obtained via electronic health records. Pregnant exercisers had no differences in risk of cesarean birth, PTB, or BW compared to control participants. OWOB exercisers had higher rates of cesarean birth (27.1% vs. 11.1%), trends of higher PTB (15.3% vs. 5.6%), but normal weight babies relative to normal weight exercisers. Controlling for race and body mass index (BMI), maternal exercise reduced the relative risk (RR) for cesarean birth from 1.63 to 1.43. Cesarean births predicted by pre-pregnancy BMI and fitness level, whereas BW was predicted by race, gestational weight gain (GWG), pre-pregnancy fitness level, and exercise level. Cesarean birth was predicted by pre-pregnancy BMI and fitness level, while maternal exercise reduced the magnitudes of the relative risks of cesarean birth. Maternal exercise, pre-pregnancy fitness level, and GWG predict neonatal BW.Trial Registration: Influence of Maternal Exercise on Infant Skeletal Muscle and Metabolomics-#NCT03838146, 12/02/2019, https://register.clinicaltrials.gov/prs/app/template/EditRecord.vm?epmode=Edit&listmode=Edit&uid=U0003Z0X&ts=8&sid=S0008FWJ&cx=77ud1i .
Project description:Overweight and obesity (OW/OB) impact half of the pregnancies in the United States and can have negative consequences for offspring health. Studies are limited on human milk alterations in the context of maternal obesity. Alterations in milk are hypothesized to impact offspring development during the critical period of lactation. We aimed to evaluate the relationships between mothers with OW/OB (body mass index [BMI] ≥25 kg/m2 ), infant growth, and selected milk nutrients. We recruited mother-infant dyads with pre-pregnancy OW/OB and normal weight status. The primary study included 52 dyads with infant growth measures through 6 months. Thirty-two dyads provided milk at 2 weeks, which was analysed for macronutrients, long-chain fatty acids, and insulin. We used multivariable linear regression to examine the association of maternal weight status with infant growth, maternal weight status with milk components, and milk components with infant growth. Mothers with OW/OB had infants with higher weight-for-length (WFL) and BMI Z-scores at birth. Mothers with OW/OB had higher milk insulin and dihomo-gamma-linolenic, adrenic, and palmitic acids and reduced conjugated linoleic and oleic acids. N6 long-chain polyunsaturated fatty acid (LC-PUFA)-driven factor 1 was associated with higher WFL, lower length-for-age (LFA), and lower head circumference-for-age Z-scores change from 2 weeks to 2 months in human milk-fed infants, whereas N6 LC-PUFA-driven factor 5 was associated with lower LFA Z-score change. Human milk composition is associated with maternal pre-pregnancy weight status and composition may be a contributing factor to early infant growth trajectory.