Project description:In this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and describe the forward model. We then propose the minimization of nonsmooth convex objective functions for the recovery of the unknown image. In this context, we investigate two data-fitting terms for Poisson-Gaussian noise and introduce a new patch-based regularization method. This approach is tested against other regularization approaches on a realistic benchmark. Finally, we perform some test experiments on images acquired on two different microscopes.
Project description:When combined with computational approaches, fluorescence imaging becomes one of the most powerful tools in biomedical research. It is possible to achieve resolution figures beyond the diffraction limit, and improve the performance and flexibility of high-resolution imaging systems with techniques such as structured illumination microscopy (SIM) reconstruction. In this study, the hardware and software implementation of an LED-based super-resolution imaging system using SIM employing GPU accelerated parallel image reconstruction is presented. The sample is illuminated with two-dimensional sinusoidal patterns with various orientations and lateral phase shifts generated using a digital micromirror device (DMD). SIM reconstruction is carried out in frequency space using parallel CUDA kernel functions. Furthermore, a general purpose toolbox for the parallel image reconstruction algorithm and an infrastructure that allows all users to perform parallel operations on images without developing any CUDA kernel code is presented. The developed image reconstruction algorithm was run separately on a CPU and a GPU. Two different SIM reconstruction algorithms have been developed for the CPU as mono-thread CPU algorithm and multi-thread OpenMP CPU algorithm. SIM reconstruction of 1024 × 1024 px images was achieved in 1.49 s using GPU computation, indicating an enhancement by ∼28 and ∼20 in computation time when compared with mono-thread CPU computation and multi-thread OpenMP CPU computation, respectively.
Project description:Computed tomography is nowadays an indispensable tool in medicine used to diagnose multiple diseases. In clinical and emergency room environments, the speed of acquisition and information processing are crucial. CUDA is a software architecture used to work with NVIDIA graphics processing units. In this paper a methodology to accelerate tomographic image reconstruction based on maximum likelihood expectation maximization iterative algorithm and combined with the use of graphics processing units programmed in CUDA framework is presented. Implementations developed here are used to reconstruct images with clinical use. Timewise, parallel versions showed improvement with respect to serial implementations. These differences reached, in some cases, 2 orders of magnitude in time while preserving image quality. The image quality and reconstruction times were not affected significantly by the addition of Poisson noise to projections. Furthermore, our implementations showed good performance when compared with reconstruction methods provided by commercial software. One of the goals of this work was to provide a fast, portable, simple, and cheap image reconstruction system, and our results support the statement that the goal was achieved.
Project description:Super-resolution structured illumination microscopy (SR-SIM) is finding increasing application in biomedical research due to its superior ability to visualize subcellular dynamics in living cells. However, during image reconstruction artifacts can be introduced and when coupled with time-consuming postprocessing procedures, limits this technique from becoming a routine imaging tool for biologists. To address these issues, an accelerated, artifact-reduced reconstruction algorithm termed joint space frequency reconstruction-based artifact reduction algorithm (JSFR-AR-SIM) was developed by integrating a high-speed reconstruction framework with a high-fidelity optimization approach designed to suppress the sidelobe artifact. Consequently, JSFR-AR-SIM produces high-quality, super-resolution images with minimal artifacts, and the reconstruction speed is increased. We anticipate this algorithm to facilitate SR-SIM becoming a routine tool in biomedical laboratories.
Project description:Super-resolution structured illumination microscopy (SIM) routinely performs image reconstruction in the frequency domain using an approach termed frequency-domain reconstruction (FDR). Due to multiple Fourier transforms between the spatial and frequency domains, SIM suffers from low reconstruction speed, constraining its applications in real-time, dynamic imaging. To overcome this limitation, we developed a new method for SIM image reconstruction, termed spatial domain reconstruction (SDR). SDR is intrinsically simpler than FDR, does not require Fourier transforms and the theory predicts it to be a rapid image reconstruction method. Results show that SDR reconstructs a super-resolution image 7-fold faster than FDR, producing images that are equal to either FDR or the widely-used FairSIM. We provide a proof-of-principle using mobile fluorescent beads to demonstrate the utility of SDR in imaging moving objects. Consequently, replacement of the FDR approach with SDR significantly enhances SIM as the desired method for live-cell, instant super-resolution imaging. This means that SDR-SIM is a "What You See Is What You Get" approach to super-resolution imaging.
Project description:Fast and precise reconstruction algorithm is desired for for multifocal structured illumination microscopy (MSIM) to obtain the super-resolution image. This work proposes a deep convolutional neural network (CNN) to learn a direct mapping from raw MSIM images to super-resolution image, which takes advantage of the computational advances of deep learning to accelerate the reconstruction. The method is validated on diverse biological structures and in vivo imaging of zebrafish at a depth of 100 µm. The results show that high-quality, super-resolution images can be reconstructed in one-third of the runtime consumed by conventional MSIM method, without compromising spatial resolution. Last but not least, a fourfold reduction in the number of raw images required for reconstruction is achieved by using the same network architecture, yet with different training data.
Project description:Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology.
Project description:Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses.
Project description:Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing. Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM.
Project description:Super-resolution structured illumination microscopy (SIM) has become a widely used method for biological imaging. Standard reconstruction algorithms, however, are prone to generate noise-specific artifacts that limit their applicability for lower signal-to-noise data. Here we present a physically realistic noise model that explains the structured noise artifact, which we then use to motivate new complementary reconstruction approaches. True-Wiener-filtered SIM optimizes contrast given the available signal-to-noise ratio, and flat-noise SIM fully overcomes the structured noise artifact while maintaining resolving power. Both methods eliminate ad hoc user-adjustable reconstruction parameters in favor of physical parameters, enhancing objectivity. The new reconstructions point to a trade-off between contrast and a natural noise appearance. This trade-off can be partly overcome by further notch filtering but at the expense of a decrease in signal-to-noise ratio. The benefits of the proposed approaches are demonstrated on focal adhesion and tubulin samples in two and three dimensions, and on nanofabricated fluorescent test patterns.