Project description:Mechanisms of DNA repair and mutagenesis are defined on the basis of relatively few proteins acting on DNA, yet the identities and functions of all proteins required are unknown. Here, we identify the network that underlies mutagenic repair of DNA breaks in stressed Escherichia coli and define functions for much of it. Using a comprehensive screen, we identified a network of ?93 genes that function in mutation. Most operate upstream of activation of three required stress responses (RpoS, RpoE, and SOS, key network hubs), apparently sensing stress. The results reveal how a network integrates mutagenic repair into the biology of the cell, show specific pathways of environmental sensing, demonstrate the centrality of stress responses, and imply that these responses are attractive as potential drug targets for blocking the evolution of pathogens.
Project description:Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Project description:Genome editing occurs in the context of chromatin, which is heterogeneous in structure and function across the genome. Chromatin heterogeneity is thought to affect genome editing efficiency, but this has been challenging to quantify due to the presence of confounding variables. Here, we develop a method that exploits the allele-specific chromatin status of imprinted genes in order to address this problem in cycling mouse embryonic stem cells (mESCs). Because maternal and paternal alleles of imprinted genes have identical DNA sequence and are situated in the same nucleus, allele-specific differences in the frequency and spectrum of mutations induced by CRISPR-Cas9 can be unequivocally attributed to epigenetic mechanisms. We found that heterochromatin can impede mutagenesis, but to a degree that depends on other key experimental parameters. Mutagenesis was impeded by up to 7-fold when Cas9 exposure was brief and when intracellular Cas9 expression was low. In contrast, the outcome of mutagenic DNA repair was unaffected by chromatin state, with similar efficiencies of homology-directed repair (HDR) and deletion spectra on maternal and paternal chromosomes. Combined, our data show that heterochromatin imposes a permeable barrier that influences the kinetics, but not the endpoint, of CRISPR-Cas9 genome editing and suggest that therapeutic applications involving low-level Cas9 exposure will be particularly affected by chromatin status.
Project description:Substitution rates in plant mitochondrial genes are extremely low, indicating strong selective pressure as well as efficient repair. Plant mitochondria possess base excision repair pathways; however, many repair pathways such as nucleotide excision repair and mismatch repair appear to be absent. In the absence of these pathways, many DNA lesions must be repaired by a different mechanism. To test the hypothesis that double-strand break repair (DSBR) is that mechanism, we maintained independent self-crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 11 generations to determine the repair outcomes when that pathway is missing. Surprisingly, no single nucleotide polymorphisms (SNPs) were fixed in any line in generation 11. The pattern of heteroplasmic SNPs was also unaltered through 11 generations. When the rate of cytosine deamination was increased by mitochondrial expression of the cytosine deaminase APOBEC3G, there was an increase in heteroplasmic SNPs but only in mature leaves. Clearly, DNA maintenance in reproductive meristem mitochondria is very effective in the absence of UNG while mitochondrial genomes in differentiated tissue are maintained through a different mechanism or not at all. Several genes involved in DSBR are upregulated in the absence of UNG, indicating that double-strand break repair is a general system of repair in plant mitochondria. It is important to note that the developmental stage of tissues is critically important for these types of experiments.
Project description:Circadian rhythms allow an organism to synchronize internal physiological responses to the external environment. Perception of external signals such as light and temperature are critical in the entrainment of the oscillator. However, sugar can also act as an entraining signal. In this work, we have confirmed that sucrose accelerates the circadian period, but this observed effect is dependent on the reporter gene used. This observed response was dependent on sucrose being available during free-running conditions. If sucrose was applied during entrainment, the circadian period was only temporally accelerated, if any effect was observed at all. We also found that sucrose acts to stabilize the robustness of the circadian period under red light or blue light, in addition to its previously described role in stabilizing the robustness of rhythms in the dark. Finally, we also found that CCA1 is required for both a short- and long-term response of the circadian oscillator to sucrose, while LHY acts to attenuate the effects of sucrose on circadian period. Together, this work highlights new pathways for how sucrose could be signaling to the oscillator and reveals further functional separation of CCA1 and LHY.
Project description:Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well understood. Hereto, we analyzed adventitious rooting under different light conditions in wild type and photomorphogenesis mutants in Arabidopsis thaliana. Etiolation was not essential for AR formation but raised the competence to form AR under white and blue light. The blue light receptors CRY1 and PHOT1/PHOT2 are key elements contributing to the induction of AR formation in response to light. Furthermore, etiolation-controlled competence for AR formation depended on the COP9 signalosome, E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC (COP1), the COP1 interacting SUPPRESSOR OF PHYA-105 (SPA) kinase family members (SPA1,2 and 3) and Phytochrome-Interacting Factors (PIF). In contrast, ELONGATED HYPOCOTYL5 (HY5), suppressed AR formation. These findings provide a genetic framework that explains the high and low AR competence of Arabidopsis thaliana hypocotyls that were treated with dark, and light, respectively. We propose that light-induced auxin signal dissipation generates a transient auxin maximum that explains AR induction by a dark to light switch.
Project description:Two different roles for SNM (sensitive to nitrogen mustard) proteins have already been described: the SNM1/PSO2-related proteins are involved in the repair of the interstrand crosslink (ICL) and the ARTEMIS proteins are involved in the V(D)J recombination process. Our study shows that an Arabidopsis SNM protein, although structurally closer to the SNM1/PSO2 members, shares some properties with ARTEMIS but also has novel characteristics. Arabidopsis plants defective for the expression of AtSNM1 did not show hypersensitivity to the ICL-forming agents but to the chemotherapeutic agent bleomycin and to H(2)O(2). AtSNM1 mutant plants are delayed in the repair of oxidative damage and did not show enhancement of the frequency of somatic homologous recombination on exposure to H(2)O(2) and to the bacterial elicitor flagellin, both inducing oxidative stress, as observed in the control plants. Therefore, our results suggest the existence, in plants, of a novel SNM-dependent recombinational repair process of oxidatively induced DNA damage.
Project description:DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation.
Project description:Sequence-specific endonucleases have been key to the study of the mechanisms and control of DNA double-strand break (DSB) repair and recombination, and the availability of CRISPR-Cas nucleases over the last decade has driven rapid progress in the understanding and application of targeted recombination in many organisms, including plants. We present here an analysis of recombination at targeted chromosomal 5' overhang DSB generated by the FnCas12a endonuclease in the plant, Arabidopsis thaliana. The much-studied Cas9 nuclease cleaves DNA to generate blunt-ended DSBs, but relatively less is known about the repair of other types of breaks, such as those with 5'-overhanging ends. Sequencing the repaired breaks clearly shows that the majority of repaired DSB carry small deletions and are thus repaired locally by end-joining recombination, confirmed by Nanopore sequencing of larger amplicons. Paired DSBs generate deletions at one or both cut-sites, as well as deletions and reinsertions of the deleted segment between the two cuts, visible as inversions. While differences are seen in the details, overall the deletion patterns are similar between repair at single-cut and double-cut events, notwithstanding the fact that only the former involve cohesive DNA overhangs. A strikingly different repair pattern is however observed at breaks flanked by direct repeats. This change in sequence context results in the presence of a major alternative class of repair events, corresponding to highly efficient repair by single-strand annealing recombination.
Project description:Chloroplasts are the sites of photosynthesis in plants, and they contain their own multicopy, requisite genome. Chloroplasts are also major sites for production of reactive oxygen species, which can damage essential components of the chloroplast, including the chloroplast genome. Compared with mitochondria in animals, relatively little is known about the potential to repair oxidative DNA damage in chloroplasts. Here we provide evidence of DNA glycosylase-lyase/endonuclease activity involved in base excision repair of oxidized pyrimidines in chloroplast protein extracts of Arabidopsis thaliana. Three base excision repair components (two endonuclease III homologs and an apurinic/apyrimidinic endonuclease) that might account for this activity were identified by bioinformatics. Transient expression of protein-green fluorescent protein fusions showed that all three are targeted to the chloroplast and co-localized with chloroplast DNA in nucleoids. The glycosylase-lyase/endonuclease activity of one of the endonuclease III homologs, AtNTH2, which had not previously been characterized, was confirmed in vitro. T-DNA insertions in each of these genes were identified, and the physiological and biochemical phenotypes of the single, double, and triple mutants were analyzed. This mutant analysis revealed the presence of a third glycosylase activity and potentially another pathway for repair of oxidative DNA damage in chloroplasts.