Project description:The genomic alterations associated with cancers are numerous and varied, involving both isolated and large-scale complex genomic rearrangements (CGRs). Although the underlying mechanisms are not well understood, CGRs have been implicated in tumorigenesis. Here, we introduce CouGaR, a novel method for characterizing the genomic structure of amplified CGRs, leveraging both depth of coverage (DOC) and discordant pair-end mapping techniques. We applied our method to whole-genome sequencing (WGS) samples from The Cancer Genome Atlas and identify amplified CGRs in at least 5.2% (10+ copies) to 17.8% (6+ copies) of the samples. Furthermore, ∼95% of these amplified CGRs contain genes previously implicated in tumorigenesis, indicating the importance and widespread occurrence of CGRs in cancers. Additionally, CouGaR identified the occurrence of 'chromoplexy' in nearly 63% of all prostate cancer samples and 30% of all bladder cancer samples. To further validate the accuracy of our method, we experimentally tested 17 predicted fusions in two pediatric glioma samples and validated 15 of these (88%) with precise resolution of the breakpoints via qPCR experiments and Sanger sequencing, with nearly perfect copy count concordance. Additionally, to further help display and understand the structure of CGRs, we have implemented CouGaR-viz, a generic stand-alone tool for visualization of the copy count of regions, breakpoints, and relevant genes.
Project description:Mild or transient dietary restriction (DR) improves many aspects of health and aging. Emerging evidence from us and others has demonstrated that DR also optimizes the development and quality of immune responses. However, the factors and mechanisms involved remain to be elucidated. Here, we demonstrate that DR-induced optimization of immunological memory requires co-operation between memory T cells, the intestinal microbiota, and myeloid cells. Our data indicate that DR enhances the ability of memory T cells to recruit and activate myeloid cells in the context of a secondary infection. Concomitantly, DR promotes expansion of the commensal Bifidobacteria within the large intestine, which supplies the short-chain fatty acid acetate to myeloid cells. Acetate conditioning of the myeloid compartment during DR enhances their capacity to kill pathogens. Enhanced host protection during DR is abolished when Bifidobacteria expansion is prevented, indicating that microbiota configuration and function critically dictates immune responsiveness to this dietary intervention. Altogether, DR induces both memory T cells and the gut microbiota to produce essential, distinct factors that converge on myeloid cells to promote optimal pathogen control. These findings reveal how nutritional cues promote adaptation and co-operation between multiple immune cells and the gut microbiota, which synergize to optimize immunity and protect the collective metaorganism.
Project description:Radiotherapy is an essential component of cancer therapy. Carbon ion radiotherapy (CIRT) promises to improve outcomes compared with standard of care in many cancers. Nevertheless, clinicians often observe in-field recurrence after CIRT. This indicates the presence of a subset of cancers that harbor intrinsic resistance to CIRT. Thus, the development of methods to identify and sensitize CIRT-resistant cancers is needed. To address this issue, we analyzed a unique donor-matched pair of clinical specimens: a treatment-naïve tumor, and the tumor that recurred locally after CIRT in the same patient. Exon sequencing of 409 cancer-related genes identified enrichment of somatic mutations in FGFR3 and FGFR4 in the recurrent tumor compared with the treatment-naïve tumor, indicating a pivotal role for FGFR signaling in cancer cell survival through CIRT. Inhibition of FGFR using the clinically available pan-FGFR inhibitor LY2874455 sensitized multiple cancer cell lines to carbon ions at 3 Gy (RBE: relative biological effectiveness), the daily dose prescribed to the patient. The sensitizer enhancement ratio was 1.66 ± 0.17, 1.27 ± 0.09, and 1.20 ± 0.18 in A549, H1299, and H1703 cells, respectively. Our data indicate the potential usefulness of the analytical pipeline employed in this pilot study to identify targetable mutations associated with resistance to CIRT, and of LY21874455 as a sensitizer for CIRT-resistant cancers. The results warrant validation in larger cohorts.
Project description:Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours, offering new avenues of investigation for the treatment of squamous cell lung cancers.
Project description:UnlabelledFor practical and robust de novo identification of genomic fusions and breakpoints from targeted paired-end DNA sequencing data, we developed Fusion And Chromosomal Translocation Enumeration and Recovery Algorithm (FACTERA). Our method has minimal external dependencies, works directly on a preexisting Binary Alignment/Map file and produces easily interpretable output. We demonstrate FACTERA's ability to rapidly identify breakpoint-resolution fusion events with high sensitivity and specificity in patients with non-small cell lung cancer, including novel rearrangements. We anticipate that FACTERA will be broadly applicable to the discovery and analysis of clinically relevant fusions from both targeted and genome-wide sequencing datasets.Availability and implementationhttp://factera.stanford.edu.
Project description:DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it possible to map SCEs at orders-of-magnitude greater resolution than was previously possible. On average, murine embryonic stem (mES) cells exhibit eight SCEs, which are detected at a resolution of up to 23 bp. Strikingly, Strand-seq of 62 single mES cells predicts that the mm 9 mouse reference genome assembly contains at least 17 incorrectly oriented segments totaling nearly 1% of the genome. These misoriented contigs and fragments have persisted through several iterations of the mouse reference genome and have been difficult to detect using conventional sequencing techniques. The ability to map SCE events at high resolution and fine-tune reference genomes by Strand-seq dramatically expands the scope of single-cell sequencing.
Project description:Genomic material within the nucleus is folded into successive layers in order to package and organize the long string of linear DNA. This hierarchical level of folding is closely associated with transcriptional regulation and DNA replication. Genes within the same folding domain demonstrate similar expression and histone-modification profiles1. Therefore, boundaries separating different domains have important roles in reinforcing the stability of these domain-wide features. Indeed, domain boundary disruptions in human genetic disorders2,3 or human cancers lead to misregulation of certain genes4,5, due to de novo enhancer exposure to promoters. However, the frequency of boundary disruptions in human cancers, and whether there are recurrently affected boundaries in specific cancer types, remains unclear. Here, to understand effects and distributions of somatic structural variations (SVs) across TADs, we utilized 288,457 high-confidence somatic structural variations from 2658 high-coverage whole genome sequencing datasets across various cancer types. We comprehensively profiled structural variations effects on the domain boundaries and the regulation of genes in human cancers. Notably, most of the TAD disruptions do not result in appreciable changes in nearby gene expression where more than 2-fold expression change was observed in only 14% of regions with the boundary deletions. In addition, we demonstrated that SV types affect TADs differently, specifically, complex rearrangements drastically change chromatin folding maps in the cancer genomes.
Project description:Chromosomal instability (CIN) generates micronuclei, aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, exposing DNA to the cytoplasm and driving a pro-inflammatory, pro-metastatic environment. Here, we identify the autophagic receptor p62/SQSTM1 as a regulator of micronuclei. p62 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements, via exerting local spatial control on peri-micronuclear ESCRT-mediated repair activity. We demonstrate that proximity of micronuclei to mitochondria leads to oxidation-driven homo-oligomerization of p62, which triggers autophagic degradation of ESCRT components, thereby limiting their repair activity. Notably, we find that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, our study identifies p62 as a novel regulator of micronuclei and indicates that it may serve as a prognostic marker of tumors with high CIN.
Project description:Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.