Ontology highlight
ABSTRACT: Summary
Shotgun proteomics is widely used in many system biology studies to determine the global protein expression profiles of tissues, cultures, and microbiomes. Many non-distributed computer algorithms have been developed for users to process proteomics data on their local computers. However, the amount of data acquired in a typical proteomics study has grown rapidly in recent years, owing to the increasing throughput of mass spectrometry and the expanding scale of study designs. This presents a big data challenge for researchers to process proteomics data in a timely manner. To overcome this challenge, we developed a cloud-based parallel computing application to offer end-to-end proteomics data analysis software as a service (SaaS). A web interface was provided to users to upload mass spectrometry-based proteomics data, configure parameters, submit jobs, and monitor job status. The data processing was distributed across multiple nodes in a supercomputer to achieve scalability for large datasets. Our study demonstrated SaaS for proteomics as a viable solution for the community to scale up the data processing using cloud computing.Availability and implementation
This application is available online at https://sipros.oscer.ou.edu/ or https://sipros.unt.edu for free use. The source code is available at https://github.com/Biocomputing-Research-Group/CloudProteoAnalyzer under the GPL version 3.0 license.
SUBMITTER: Li J
PROVIDER: S-EPMC10942798 | biostudies-literature | 2024
REPOSITORIES: biostudies-literature
Li Jiancheng J Xiong Yi Y Feng Shichao S Pan Chongle C Guo Xuan X
Bioinformatics advances 20240223 1
<h4>Summary</h4>Shotgun proteomics is widely used in many system biology studies to determine the global protein expression profiles of tissues, cultures, and microbiomes. Many non-distributed computer algorithms have been developed for users to process proteomics data on their local computers. However, the amount of data acquired in a typical proteomics study has grown rapidly in recent years, owing to the increasing throughput of mass spectrometry and the expanding scale of study designs. This ...[more]