Project description:To date, the regenerative potential of mitochondrial transplantation (MT) has been extensively investigated under several pathologies. Among various cardiovascular diseases, ischemic heart disease (IHD), the most prevalent pathological condition in human medicine, is induced by coronary artery narrowing, or occlusion, leading to bulk necrotic changes and fibrosis within the myocardium. Data associated with the pro-angiogenic activity of mitochondria have not been completely elucidated in terms of cardiac tissue regeneration. Here, we aimed to highlight the recent studies and advantages related to the application of mitochondrial mass in the ischemic myocardium. How and by which mechanisms, mitochondria can reduce aberrant myocardial tissue remodeling via different pathways such as angiogenesis and de novo blood formation was discussed in detail. We hope that data from the current review article help us understand the molecular and cellular mechanisms by which transplanted mitochondria exert their regenerative properties in the ischemic myocardium.
Project description:Necroptosis is crucially involved in severe cardiac pathological conditions. However, whether necroptosis contributes to age-related intolerance to ischemia/reperfusion (I/R) injury remains elusive. In addition, metformin as a potential anti-aging related injury drug, how it interacts with myocardial necroptosis is not yet clear. Male C57BL/6 mice at 3-4- (young) and 22-24 months of age (aged) and RIPK3-deficient (Ripk3-/- ) mice were used to investigate aging-related I/R injury in vivo. Metformin (125 μg/kg, i.p.), necrostatin-1 (3.5 mg/kg), and adenovirus vector encoding p62-shRNAs (Ad-sh-p62) were used to treat aging mice. I/R-induced myocardial necroptosis was exaggerated in aged mice, which correlated with autophagy defects characterized by p62 accumulation in aged hearts or aged human myocardium. Functionally, blocking autophagic flux promoted H/R-evoked cardiomyocyte necroptosis in vitro. We further revealed that p62 forms a complex with RIP1-RIP3 (necrosome) and promotes the binding of RIP1 and RIP3. In mice, necrostatin-1 treatment (a RIP1 inhibitor), RIP3 deficiency, and cardiac p62 knockdown in vivo demonstrated that p62-RIP1-RIP3-dependent myocardial necroptosis contributes to aging-related myocardial vulnerability to I/R injury. Notably, metformin treatment disrupted p62-RIP1-RIP3 complexes and effectively repressed I/R-induced necroptosis in aged hearts, ultimately reducing mortality in this model. These findings highlight previously unknown mechanisms of aging-related myocardial ischemic vulnerability: p62-necrosome-dependent necroptosis. Metformin acts as a cardioprotective agent that inhibits this unfavorable chain mechanism of aging-related I/R susceptibility.
Project description:Ischemic heart disease (IHD) is caused by the narrowing of arteries that work to provide blood, nutrients, and oxygen to the myocardial tissue. The worldwide epidemic of IHD urgently requires innovative treatments despite the significant advances in medical, interventional, and surgical therapies for this disease. Angiogenesis is a physiological and pathophysiological process that initiates vascular growth from pre-existing blood vessels in response to a lack of oxygen. This process occurs naturally over time and has encouraged researchers and clinicians to investigate the outcomes of accelerating or enhancing this angiogenic response as an alternative IHD therapy. Therapeutic angiogenesis has been shown to revascularize ischemic heart tissue, reduce the progression of tissue infarction, and evade the need for invasive surgical procedures or tissue/organ transplants. Several approaches, including the use of proteins, genes, stem/progenitor cells, and various combinations, have been employed to promote angiogenesis. While clinical trials for these approaches are ongoing, microvesicles and exosomes have recently been investigated as a cell-free approach to stimulate angiogenesis and may circumvent limitations of using viable cells. This review summarizes the approaches to accomplish therapeutic angiogenesis for IHD by highlighting the advances and challenges that addresses the applicability of a potential pro-angiogenic medicine.
Project description:Coronary artery disease (CAD) is the number one cause of death among men and women in the USA. Genetic predisposition and environmental factors lead to the development of atherosclerotic plaques in the vessel walls of the coronary arteries, resulting in decreased myocardial perfusion. Treatment includes a combination of revascularization procedures and medical therapy. Because of the high surgical risk of many of the patients undergoing revascularization procedures, medical therapies to reduce ischemic disease are an area of active research. Small molecule, cytokine, endothelial progenitor cell, stem cell, gene, and mechanical therapies show promise in increasing the collateral growth of blood vessels, thereby reducing myocardial ischemia.
Project description:We have previously shown that transplantation of autologously derived, respiration-competent mitochondria by direct injection into the heart following transient ischemia and reperfusion enhances cell viability and contractile function. To increase the therapeutic potential of this approach, we investigated whether exogenous mitochondria can be effectively delivered through the coronary vasculature to protect the ischemic myocardium and studied the fate of these transplanted organelles in the heart. Langendorff-perfused rabbit hearts were subjected to 30 minutes of ischemia and then reperfused for 10 minutes. Mitochondria were labeled with 18F-rhodamine 6G and iron oxide nanoparticles. The labeled mitochondria were either directly injected into the ischemic region or delivered by vascular perfusion through the coronary arteries at the onset of reperfusion. These hearts were used for positron emission tomography, microcomputed tomography, and magnetic resonance imaging with subsequent microscopic analyses of tissue sections to confirm the uptake and distribution of exogenous mitochondria. Injected mitochondria were localized near the site of delivery; while, vascular perfusion of mitochondria resulted in rapid and extensive dispersal throughout the heart. Both injected and perfused mitochondria were observed in interstitial spaces and were associated with blood vessels and cardiomyocytes. To determine the efficacy of vascular perfusion of mitochondria, an additional group of rabbit hearts were subjected to 30 minutes of regional ischemia and reperfused for 120 minutes. Immediately following regional ischemia, the hearts received unlabeled, autologous mitochondria delivered through the coronary arteries. Autologous mitochondria perfused through the coronary vasculature significantly decreased infarct size and significantly enhanced post-ischemic myocardial function. In conclusion, the delivery of mitochondria through the coronary arteries resulted in their rapid integration and widespread distribution throughout the heart and provided cardioprotection from ischemia-reperfusion injury.
Project description:Ischemic heart disease (IHD) is one of the primary causes of death around the world. Therapeutic angiogenesis is a promising innovative approach for treating IHD, improving cardiac function by promoting blood perfusion to the ischemic myocardium. This treatment is especially important for targeting patients that are unable to undergo angioplasty or bypass surgery. Chinese herbal medicines have been used for more than 2,500 years and they play an important role alongside contemporary medicines in China. Growing evidence in animal models show Chinese herbal medicines can provide therapeutic effect on IHD by targeting angiogenesis. Identifying the mechanism in which Chinese herbal medicines can promote angiogenesis in IHD is a major topic in the field of traditional Chinese medicine, and has the potential for advancing therapeutic treatment. This review summarizes the progression of research and highlights potential pro-angiogenic mechanisms of Chinese herbal medicines in IHD. In addition, an outline of the limitations of Chinese herbal medicines and challenges they face will be presented.
Project description:Acute myocardial infarction (MI) is one of the leading causes of death in humans. Our previous studies showed that gastrin alleviated acute myocardial ischaemia-reperfusion injury. We hypothesize that gastrin might protect against heart injury after MI by promoting angiogenesis. An MI model was simulated by ligating the anterior descending coronary artery in adult male C57BL/6J mice. Gastrin was administered twice daily by intraperitoneal injection for 2 weeks after MI. We found that gastrin reduced mortality, improved myocardial function with reduced infarct size and promoted angiogenesis. Gastrin increased HIF-1α and VEGF expression. Downregulation of HIF-1α expression by siRNA reduced the proliferation, migration and tube formation of human umbilical vein endothelial cells. These results indicate that gastrin restores cardiac function after MI by promoting angiogenesis via the HIF-1α/VEGF pathway.
Project description:Reversible myocardial ischemia/reperfusion (I/R) or ischemic preconditioning (IPC) is associated with an immediate genomic response; IPC-induced immediate early genes are associated with reduced infarct size. Because the immediate early response gene X-1 (IEX-1) plays a central role in cell apoptosis, we examine whether IEX-1 exerts protective effects against I/R injury. We found that the IEX-1 mRNA level was increased in the IPC-imposed rat heart. However, it was downregulated in the I/R rat heart, which was prevented by in situ IPC. When IEX-1 was knocked down, the protective effects imposed by IPC were lessened. Local gene delivery of Ad-IEX-1 to the left ventricle greatly diminished cardiac infarct size and improved systolic functions of I/R hearts in rats. In contrast, knocking down IEX-1 expression exacerbates myocardial infarction. Overexpression of IEX-1 in neonatal rat cardiomyocytes significantly reduced hypoxia-reoxygenation-induced intracellular and mitochondrial ROS accumulation and cell apoptosis. Furthermore, IPC-induced phosphorylation and particle translocation of PKCε were impaired by knocking down IEX-1 in vivo, and overexpressing IEX-1 showed similar cardioprotection imposed by IPC. Our results demonstrate that IPC increases IEX-1 expression, which may promote phosphorylation and particle translocation of PKCε and thus reduce intracellular ROS accumulation. These beneficial effects reduce cardiomyocyte apoptosis and necrosis to alleviate cardiac infarction.
Project description:Derangement of redox condition largely contributes to cardiac ischemia/reperfusion (I/R) injury. FoxO1 is a transcription factor which transcripts a series of antioxidants to antagonize I/R-induced oxidative myocardial damage. N-n-butyl haloperidol iodide (F2 ) is a derivative derived from haloperidol structural modification with potent capacity of inhibiting oxidative stress. This investigation intends to validate whether cardio-protection of F2 is dependent on FoxO1 using an in vivo mouse I/R model and if so, to further elucidate the molecular regulating mechanism. This study initially revealed that F2 preconditioning led to a profound reduction in I/R injury, which was accompanied by attenuated oxidative stress and upregulation of antioxidants (SOD2 and catalase), nuclear FoxO1 and phosphorylation of AMPK. Furthermore, inactivation of FoxO1 with AS1842856 abolished the cardio-protective effect of F2 . Importantly, we identified F2 -mediated nuclear accumulation of FoxO1 is dependent on AMPK, as blockage of AMPK with compound C induced nuclear exit of FoxO1. Collectively, our data uncover that F2 pretreatment exerts significant protection against post ischemic myocardial injury by its regulation of AMPK/FoxO1 pathway, which may provide a new avenue for treating ischemic disease.
Project description:Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), and reduced BH4 availability leads to endothelial NOS (eNOS) uncoupling and increased reactive oxygen species (ROS) generation. Questions remain regarding the functional state of eNOS and role of BH4 availability in the process of in vivo myocardial ischemia-reperfusion (I/R) injury. Rats were subjected to 60min of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic liposomal BH4 supplementation (1mg/kg, iv). Myocardial infarction was correlated with cardiac BH4 content, eNOS protein level, NOS enzyme activity, and ROS generation. In the vehicle group, 60-min ischemia drastically reduced myocardial BH4 content in the area at risk (AAR) compared to non-ischemic (NI) area and the level remained lower during early reperfusion followed by recovery after 24-h reperfusion. Total eNOS, activated eNOS protein level (eNOS Ser1177 phosphorylation) and NOS activity were also significantly reduced during ischemia and/or early reperfusion, but recovered after 24-h reperfusion. With liposomal BH4 treatment, BH4 levels were identical in the AAR and NI area during ischemia and/or early reperfusion, and were significantly higher than with vehicle. BH4 pre-treatment preserved eNOS Ser1177 phosphorylation and NOS activity in the AAR, and significantly reduced myocardial ROS generation and infarction compared to vehicle. These findings provide direct evidence that in vivo I/R induces eNOS dysfunction secondary to BH4 depletion, and that pre-ischemic liposomal BH4 administration preserves eNOS function conferring cardioprotection with reduced oxidative stress.