Project description:Cytospora is a genus including important phytopathogens causing severe dieback and canker diseases distributed worldwide with a wide host range. However, identification of Cytospora species is difficult since the currently available DNA sequence data are insufficient. Aside the limited availability of ex-type sequence data, most of the genetic work is only based on the ITS region DNA marker which lacks the resolution to delineate to the species level in Cytospora. In this study, three fresh strains were isolated from the symptomatic branches of Elaeagnus angustifolia in Xinjiang Uygur Autonomous Region, China. Morphological observation and multi-locus phylogenetic analyses (ITS, LSU, ACT and RPB2) support these specimens are best accommodated as a distinct novel species of Cytospora. Cytospora elaeagnicola sp. nov. is introduced, having discoid, nearly flat, pycnidial conidiomata with hyaline, allantoid conidia, and differs from its relatives genetically and by host association.
Project description:To identify apple canker casual agents and evaluate their pathogenicity and virulence in apple production hubs including West Azarbaijan, Isfahan and Tehran provinces; samples were collected from symptomatic apple trees. Pathogenic isolates on the detached branches were identified as Cytospora cincta, Diplodia bulgarica, Neoscytalidium dimidiatum and Eutypa cf. lata. E. cf. lata was reported as a potential apple canker causal agent in Iran for the first time based on the pathogenicity test on the detached branches, whereas it caused no canker symptoms in apple trees until 6 months after inoculation. Currently, E. cf. lata seems to be adapted to a single city. C. cincta, D. bulgarica and N. dimidiatum caused canker symptoms in apple trees. "C. cincta" and also "C. cincta and N. dimidiatum" were the most widespread and aggressive apple canker species, respectively, associated with apple canker in Iran. Therefore, they are considered to be the main threat to apple production in Iran and should be carefully monitored. Disease progress curve, area under the disease progress curve and optimum temperatures were determined for mentioned species. It is concluded that the establishment of each species occurs in appropriate areas and times in terms of the optimum temperature for their growth.
Project description:Cytospora canker has become a devastating disease of apple species worldwide, and in severe cases, it may cause dieback of entire trees. The aim of this study was to characterize the diversity of cultivable bacteria from the wild apple microbiota and to determine their antifungal ability against the canker-causing pathogenic fungi Cytospora mali and C. parasitica. Five bacterial strains belonging to the species Bacillus amyloliquefaciens, B. atrophaeus, B. methylotrophicus, B. mojavensis, and Pseudomonas synxantha showed strong antagonistic effects against pathogenic fungi. Therefore, since the abovementioned Bacillus species produce known antifungal compounds, we characterized the antifungal compounds produced by Ps. synxantha. Bacteria grown on nutritional liquid medium were dehydrated, and the active compound from the crude extract was isolated and analysed via a range of chromatographic processes. High-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance analyses revealed a bioactive antifungal compound, phenazine-1-carboxylic acid (PCA). The minimum inhibitory concentration (MIC) demonstrated that PCA inhibited mycelial growth, with a MIC of 10 mg mL-1. The results suggested that PCA could be used as a potential compound to control C. mali and C. malicola, and it is a potential alternative for postharvest control of canker disease.
Project description:Two novel strains AV382 and AV436 were isolated from a submerged industrial bioreactor for production of apple cider vinegar in Kopivnik (Slovenia). Both strains showed very high (≥98.2%) 16S rRNA gene sequence similarities with Komagataeibacter species, but lower 16S-23S rRNA gene internal transcribed spacer (ITS). The highest similarity of the 16S-23S rRNA gene ITS of AV382 was to Komagataeibacter kakiaceti LMG 26206T (91.6%), of AV436 to Komagataeibacter xylinus LMG 1515T (93.9%). The analysis of genome sequences confirmed that AV382 is the most closely related to K. kakiaceti (ANIb 88.2%) and AV436 to K. xylinus (ANIb 91.6%). Genome to genome distance calculations exhibit for both strains ≤47.3% similarity to all type strains of the genus Komagataeibacter. The strain AV382 can be differentiated from its closest relatives K. kakiaceti and Komagataeibacter saccharivorans by its ability to form 2-keto and 5-keto-D-gluconic acids from glucose, incapability to grow in the presence of 30% glucose, formation of C19:0 cyclo ω8c fatty acid and tolerance of up to 5% acetic acid in the presence of ethanol. The strain AV436 can be differentiated from its closest relatives K. xylinus, Komagataeibacter sucrofermentans, and Komagataeibacter nataicola by its ability to form 5-keto-D-gluconic acid, growth on 1-propanol, efficient synthesis of cellulose, and tolerance to up to 5% acetic acid in the presence ethanol. The major fatty acid of both strains is C18:1ω7c. Based on a combination of phenotypic, chemotaxonomic and phylogenetic features, the strains AV382T and AV436T represent novel species of the genus Komagataeibacter, for which the names Komagataeibactermelaceti sp. nov. and Komagataeibacter melomenusus are proposed, respectively. The type strain of Komagataeibacter melaceti is AV382T (= ZIM B1054T = LMG 31303T = CCM 8958T) and of Komagataeibacter melomenusus AV436T (= ZIM B1056T = LMG 31304T = CCM 8959T).
Project description:A Gram-staining positive facultative anaerobic, non-motile strain, sk1b4T , was isolated from canker of symptomatic bark tissue of a Populus × euramericana. 16S rRNA gene sequence analyses showed that strain sk1b4T shared the highest similarity with Arcanobacterium phocisimile (94.1%). Within the phylogenetic tree, the novel isolate formed a distinct branch from Actinobaculum, Arcanobacterium, and Trueperella. The percentage of conserved proteins calculated from genomic sequence indicated a low level of relatedness between the novel strain and its phylogenetic neighbors. Growth of the novel strain occurred at temperatures between 10 and 41°C, and within a pH range of 6.0-9.0; optimal growth occurred at 30°C and at pH 6.0-9.0. Growth also occurred within a NaCl concentration of 1%-5% (w/v). The major fatty acids of the strain were C14:0 , C16:0 , and C18:1 ω9c, and major polar lipids were glycolipid, phosphatidylinositol mannoside, phospholipid, diphosphatidylglycerol, and phosphatidylglycerol. Respiratory quinone was absent. On the basis of phenotypic and genotypic characteristics, we propose that the novel isolate should be classified as a novel species in a new genus: Ancrocorticia populi gen. nov., sp. nov. The type strain is sk1b4T (=CFCC 14564T = KCTC 39919T ).
Project description:A new species of Cytospora was isolated from cankered wood of Prunus spp. during a survey of orchards exhibiting symptoms of fruit tree decline syndrome in southern Ontario, Canada. We found isolates that are morphologically similar to species in the Cytosporaceae family, which is characterized by single or labyrinthine locules, filamentous conidiophores or clavate to elongate obovoid asci and allantoid, hyaline conidia. Multi-gene phylogenetic analysis of ITS, LSU, act and tef1- α showed that the isolates form a distinct clade, sister to Cytospora plurivora. Morphologically, our isolates showed differences in the length of conidia and culture characteristics compared to C. plurivora, suggesting the establishment of a new species. The species is described as Cytospora paraplurivora sp. nov. and placed in the family Cytosporaceae of Diaporthales. Additionally, we sequenced, assembled and characterized the genome of the representative isolate for this new species. The phylogenomic analysis confirms the species order and family level classification. C. paraplurivora sp. nov. has the potential to severely affect stone fruits production, causing cankers and dieback in stressed trees, and eventually leads to tree decline. Pathogenicity tests show that the species is pathogenic to Prunus persica var. persica.
Project description:Oenopia shirkuhensis sp. nov. (Coleoptera, Coccinellidae) is described and illustrated. It was found in the mountains around Shirkooh mountain, Yazd province, and in the Kukhbenan Mountains, Kerman province, Iran. It is similar to a common ladybird Adalia bipunctata by the colour pattern on elytra. Congeneric species occurring in Iran, O. conglobata and partly O. oncina are illustrated for comparison, and an identification key is provided.
Project description:Leptographium spp. are commonly associated with bark beetles and weevils (Coleoptera: Curculionidae), and some are important tree pathogens. In a recent survey of diseases and insect pests of conifer trees in Bhutan, the root collar weevil, Hylobitelus chenkupdorjii was found girdling young Himalayan blue pine (Pinus wallichiana) trees in Central Bhutan. Intensive wood staining and a Leptographium sp. were associated with damage by this insect. The fungus was also isolated from individuals of H. chenkupdorjii. It was tentatively identified based on morphology and then compared with other Leptographium spp. using DNA sequences for three gene regions. Morphological characteristics showed that the Leptographium sp. from H. chenkupdorjii is similar to, but distinct from L. procerum and L. profanum. DNA sequence comparisons revealed that the isolates from Bhutan resided in a distinct well-supported clade and confirmed that they represent an undescribed taxon for which the name Leptographium bhutanense sp. nov. is provided.
Project description:An investigation into oomycete diversity in rice paddies of Fars Province in Iran led to the identification of two new Pythium sensu lato (s.l.) species as Globisporangium izadpanahii sp. nov. and Pythium banihashemianum sp. nov. The identification was based on morphological and physiological features as well as on the phylogenetic analysis of nuclear (ITS and βtub) and mitochondrial (cox1 and cox2) loci using Bayesian inference and Maximum Likelihood. The present paper formally describes these two new species and defines their phylogenetic relationships with other congeneric species. According to multiple gene genealogy analysis, G. izadpanahii sp. nov. was grouped with other species of Globisporangium (formerly, clade G of Pythium s.l.) and was closely related to both G. nagaii and the recently described G. coniferarum. The second species, designated P. banihashemianum sp. nov., was grouped with other species of Pythium sensu stricto (formerly, clade B of Pythium s.l.) and, according to the phylogenetic analysis, shared an ancestor with P. plurisporium. The production of globose hyphal swellings was a major characteristic of G. izadpanahii sp. nov., which did not produce vesicles and zoospores. In pathogenicity tests on rice seedlings, P. banihashemianum sp. nov. isolates were highly pathogenic and caused severe root and crown rot, while G. izadpanahii sp. nov. isolates were not pathogenic.