Project description:BackgroundWith world food demand expected to double by 2050, identifying farming systems that benefit both agricultural production and biodiversity is a fundamentally important challenge for the 21(st) century, but this has to be achieved in a sustainable way. Livestock grazing management directly influences both economic outputs and biodiversity on upland farms while contributing to potentially damaging greenhouse gas emissions, yet no study has attempted to address these impacts simultaneously.MethodsUsing a replicated, landscape-scale field experiment consisting of five management 'systems' we tested the effects of progressively altering elements within an upland farming system, viz i) incorporating cattle grazing into an upland sheep system, ii) integrating grazing of semi-natural rough grazing into a mixed grazing system based on improved pasture, iii) altering the stocking ratio within a mixed grazing system, and iv) replacing modern crossbred cattle with a traditional breed. We quantified the impacts on livestock productivity and numbers of birds and butterflies over four years.Results conclusion and significanceWe found that management systems incorporating mixed grazing with cattle improve livestock productivity and reduce methane emissions relative to sheep only systems. Systems that also included semi-natural rough grazing consistently supported more species of birds and butterflies, and it was possible to incorporate bouts of summer grazing of these pastures by cattle to meet habitat management prescriptions without compromising cattle performance overall. We found no evidence that the system incorporating a cattle breed popular as a conservation grazer was any better for bird and butterfly species richness than those based on a mainstream breed, yet methane emissions from such a system were predicted to be higher. We have demonstrated that mixed upland grazing systems not only improve livestock production, but also benefit biodiversity, suggesting a 'win-win' solution for farmers and conservationists.
Project description:A large area of the terrestrial land surface is used for livestock grazing. Trees on grazing lands provide and can enhance multiple ecosystem services such as provisioning, cultural and regulating, that include carbon sequestration. In this study, we assessed the above- and belowground carbon stocks across six different land-uses in livestock-dominated landscapes of Mexico. We measured tree biomass and soil organic carbon (SOC) stocks in fodder banks, live fences, pasturelands with dispersed trees, secondary forests, and primary forests from three different geographical regions and compared them with conventional open pasturelands respectively. We also calculated tree diversity indices for each land-use and their similarity with native primary forests. The aboveground woody biomass stocks differed significantly between land-uses and followed the gradient from less diverse conventional open pasturelands to silvopastoral systems and ecologically complex primary forests. The SOC stocks showed a differential response to the land-use gradient dependent on the study region. Multivariate analyses showed that woody biomass, fine root biomass, and SOC concentrations were positively related, while land-use history and soil bulk density showed an inverse relationship to these variables. Silvopastoral systems and forest remnants stored 27-163% more carbon compared to open pasturelands. Our results demonstrate the importance of promoting appropriate silvopastoral systems and conserving forest remnants within livestock-dominated landscapes as a land-based carbon mitigation strategy. Furthermore, our findings also have important implications to help better manage livestock-dominated landscapes and minimize pressures on natural protected areas and biodiversity in the hotspots of deforestation for grassland expansion.
Project description:Ways are being sought to reduce the environmental impact of ruminant livestock farming. Integration of trees into farming systems has been advocated as a measure to deliver ecosystem services, inter alia climate regulation and adaptation, water quality regulation, provisioning of fibre, fuel and habitats to support biodiversity. Despite the rapid expansion of cattle farming in the tropics, notably in Latin America, there is little robust evidence on the extent to which trees are able to mitigate the effects of cattle farming in this ecological zone. This article describes a case study conducted on a large, specialised dairy farm in Costa Rica, where two-thirds of the field boundaries are live tree fences. For the first time, this study quantifies the offset potential of trees by estimating rate of carbon sequestration in a silvopastoral system (SPS) in the tropics. It was found that over a 30-month interval, trees sequestered 1.43 Mg C ha-1 year-1 above and below ground. Attributional life cycle assessment (LCA) (cradle to farm gate) was applied to calculate the carbon footprint of milk produced on the farm for the years 2016 to 2018. Trees in live fences offset 21-37% of milk footprints, resulting in residual net footprints of 0.75±0.25 to 0.84±0.26 kg CO2 eq. kg-1 milk. Exclusion of life cycle emissions that may not fall within national emission inventory accounting (e.g. fertiliser manufacture and feed production) increased the mean offset from 27 to 34% of gross milk footprint. Although based on temporally limited data (30 months), our findings indicate that a live fence SPS could play an important role in short- to medium-term climate mitigation from livestock production, buying time for deployment of long-term mitigation and adaptation planning.Supplementary informationThe online version contains supplementary material available at 10.1007/s13593-022-00834-z.
Project description:The aim of this study was to evaluate a commercial sensor-a three-axis accelerometer-to predict animal behavior with a variety of conditions in tropical grazing systems. The sensor was positioned on the underjaw of young bulls to detect the animals' movements. A total of 22 animals were monitored in a grazing system, during both seasons (wet and dry), with different quality and quantity forage allowance. The machine learning (ML) methods used were random forest (RF), convolutional neural net and linear discriminant analysis; the metrics used to determine the best method were accuracy, Kappa coefficient, and a confusion matrix. After predicting animal behavior using the best ML method, a forecast for animal performance was developed using a mechanistic model: multiple linear regression to correlate intermediate average daily gain (iADG) observed versus iADG predicted. The best ML method yielded accuracy of 0.821 and Kappa coefficient of 0.704, was RF. From the forecast for animal performance, the Pearson correlation was 0.795 and the mean square error was 0.062. Hence, the commercial Ovi-bovi sensor, which is a three-axis accelerometer, can act as a powerful tool for predicting animal behavior in beef cattle production developed under a variety tropical grazing condition.
Project description:Despite an increasing amount of data on the effects of tropical land use on continental forest fauna and flora, it is debatable whether the choice of the indicator variables allows for a proper evaluation of the role of modified habitats in mitigating the global biodiversity crisis. While many single-taxon studies have highlighted that species with narrow geographic ranges especially suffer from habitat modification, there is no multi-taxa study available which consistently focuses on geographic range composition of the studied indicator groups. We compiled geographic range data for 180 bird, 119 butterfly, 204 tree and 219 understorey plant species sampled along a gradient of habitat modification ranging from near-primary forest through young secondary forest and agroforestry systems to annual crops in the southwestern lowlands of Cameroon. We found very similar patterns of declining species richness with increasing habitat modification between taxon-specific groups of similar geographic range categories. At the 8 km(2) spatial level, estimated richness of endemic species declined in all groups by 21% (birds) to 91% (trees) from forests to annual crops, while estimated richness of widespread species increased by +101% (trees) to +275% (understorey plants), or remained stable (-2%, butterflies). Even traditional agroforestry systems lost estimated endemic species richness by -18% (birds) to -90% (understorey plants). Endemic species richness of one taxon explained between 37% and 57% of others (positive correlations) and taxon-specific richness in widespread species explained up to 76% of variation in richness of endemic species (negative correlations). The key implication of this study is that the range size aspect is fundamental in assessments of conservation value via species inventory data from modified habitats. The study also suggests that even ecologically friendly agricultural matrices may be of much lower value for tropical conservation than indicated by mere biodiversity value.
Project description:Trees and shrubs expanded in the last decades in European mountains due to land abandonment and the decrease in grazing pressure, and are expected to further spread also due to climate change. As a consequence of low forage quality and topographic constraints, the management of mountain environments dominated by woody vegetation with livestock is often challenging. Silvopastoral systems based on cattle hardy breeds able to forage on woody plants, such as Highland cattle, could be a suitable option for the management and restoration of such environments. In this study, we used direct observations to explore the foraging behavior of Highland cattle in four study areas across the western Alps. In particular, we assessed: (1) cattle diet composition, (2) the selection for more than 30 tree and shrub species, and (3) the relationships between species consumption and their abundance in the environment. Highland cattle fed on a mixture of both woody and herbaceous species, including between 15 and 46% of woody plants in the diet. Some trees (e.g., Celtis australis, Fraxinus spp., and Populus tremula) and shrubs (e.g., Frangula alnus, Rhamnus spp., and Rubus idaeus) were positively selected by cattle, thus they could be an important forage supplement to their diet. Moreover, the results highlighted that relative species consumption generally increased with increasing species abundance in the environment, suggesting that this cattle breed could be suitable to control shrub expansion in highly encroached areas. The outcomes of this study can support the development of targeted silvopastoral systems in the Alps.Supplementary informationThe online version contains supplementary material available at 10.1007/s10457-023-00926-z.
Project description:Modern agriculture has drastically changed global landscapes and introduced pressures on wildlife populations. Policy and management of agricultural systems has changed over the last 30 years, a period characterized not only by intensive agricultural practices but also by an increasing push towards sustainability. It is crucial that we understand the long-term consequences of agriculture on beneficial invertebrates and assess if policy and management approaches recently introduced are supporting their recovery. In this study, we use large citizen science datasets to derive trends in invertebrate occupancy in Great Britain between 1990 and 2019. We compare these trends between regions of no- (0%), low- (greater than 0-50%) and high-cropland (greater than 50%) cover, which includes arable and horticultural crops. Although we detect general declines, invertebrate groups are declining most strongly in high-cropland cover regions. This suggests that even in the light of improved policy and management over the last 30 years, the way we are managing cropland is failing to conserve and restore invertebrate communities. New policy-based drivers and incentives are required to support the resilience and sustainability of agricultural ecosystems. Post-Brexit changes in UK agricultural policy and reforms under the Environment Act offer opportunities to improve agricultural landscapes for the benefit of biodiversity and society.
Project description:The global banana industry faces a significant threat from Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). While prior research has concentrated on TR4's dissemination, reproductive conditions, and resistant banana varieties, this study employs a socioeconomic and cost-benefit analysis to explore the vulnerability of banana producers to TR4 in Colombia. It assesses the financial viability of current monitoring strategies and estimates potential losses in the event of TR4 spreading within the study area. Interviews were conducted with producers and key stakeholders in Colombia's top two banana-producing departments, Antioquia and Magdalena. The findings reveal that farming systems are highly vulnerable to TR4, particularly due to the prevalent use of corms. Producers employ preventive measures such as cement paths, fences, disinfecting stations, and footbaths to counteract TR4's spread. A cost-benefit analysis indicates that the benefits of these prevention methods significantly outweigh the associated costs, with a net present value of implementing prevention strategies per hectare of $95,389 USD and $112,527 USD in Magdalena and Antioquia and a benefit-cost ratio of 3.1 and 4.2, respectively. Considering the substantial impact TR4 could have in Colombia if it becomes more widespread, we recommend widespread adoption of preventive measures, including the construction and utilization of cement paths and disinfectant methods on all banana farms. Additionally, to enhance awareness and early detection, we propose leveraging technology, such as mobile applications (apps) and chat groups, to empower farmers in identifying and preventing the spread of TR4.
Project description:Iceland has an abundance of fissures that are parallel to the Mid-Atlantic Ridge where bedrock cracks as a result of continental rifting. Some fissures penetrate the aquifer and expose the groundwater within the bedrock, becoming springs. As such, groundwater fissures have uniform and constant physical and chemical environment but they can differ greatly in morphology. In addition, there is often great variation in depth within fissures and substrate types contrast between vertical rock wall and more heterogenous horizontal bottom. The variation in morphological environment may create dissimilar habitats with unique characteristics and/or influence distribution of resources. Our objective was to study macrozoobenthos communities in cold groundwater fissures in Iceland in relation to physical habitat by comparing invertebrate diversity and density both between fissures with different morphological characteristics as well as between substrate types and depths within fissures. Samples were collected in two fissures in SW Iceland, Silfra and Flosagjá. Assemblages were similar between fissures except for higher densities of cladocerans in Flosagjá fissure. Within fissures, there was significant difference in Shannon diversity between substrate types in Flosagjá, and ostracods were found in significantly higher densities on the bottom. The distribution of all other taxa groups was homogenous in both fissures regardless of depth gradient and substrate. Invertebrates were found to be living within and around a biofilm that covered the entire substrate. These biofilm mats are made from Cyanobacteria and benthic diatoms, which are successful under low light conditions and may minimize any effect of the heterogeneous habitat creating a uniform and suitable microhabitat for invertebrates regardless of depth and substrate type.
Project description:Antimicrobial resistance (AMR) is a major threat to humans and animals globally. Antimicrobial stewardship has been acknowledged as a primary strategy to tackle AMR. An important first step for antimicrobial stewardship is to quantify antimicrobial use (AMU). In Fiji, there are currently no data on AMU in livestock farms. This study aimed to quantify AMU in different livestock enterprises (beef, dairy, broiler, and layer) and farming systems (backyard, semi-commercial and commercial) in Central and Western divisions of Viti Levu, Fiji. A survey with 210 livestock farmers and 26 managers representing 276 enterprises was conducted between May and September 2019. The difference in AMU between different livestock enterprises and farming systems was investigated using ANOVA. In Fiji, the estimated annual antibiotic use in livestock was lower than the global average (44 compared with 118 mg/PCU). However, this use was concentrated in 56% of participant farms (the remaining 44% did not use antimicrobials). Total estimated quarterly anthelmintic use (20,797 mg) was not affected by farming systems but was highest (P < 0.001) in dairy enterprises (24,120 mg) and lowest in broiler enterprises (4 mg). Quarterly antibiotic use was different between the enterprises regardless of the metrics used to quantify the use (P < 0.05). Total estimated quarterly mg/PCU of antibiotic use was highest (P < 0.001) in broiler enterprises (12.4 mg/PCU) and lowest in beef enterprises (0.2 mg/PCU). For all other ESVAC metrics, total estimated antibiotic use was higher in poultry and lower in cattle enterprises. Backyard systems used less antibiotics (total mg) than commercial systems, but for other metrics, the trend was reversed. The use of both antibiotics and anthelmintics (rather than antibiotics or anthelmintics alone, or no AMU) was associated with dairy enterprises (Χ2 = 123, P < 0.001). Further studies should be conducted to quantify and evaluate the drivers of AMU in Fijian livestock farms. In addition, differences in AMU between different enterprises and farming systems suggest that strategies to reduce AMU should be tailored to specific settings.