Project description:Sparse seismic instrumentation in the oceans limits our understanding of deep Earth dynamics and submarine earthquakes. Distributed acoustic sensing (DAS), an emerging technology that converts optical fiber to seismic sensors, allows us to leverage pre-existing submarine telecommunication cables for seismic monitoring. Here we report observations of microseism, local surface gravity waves, and a teleseismic earthquake along a 4192-sensor ocean-bottom DAS array offshore Belgium. We observe in-situ how opposing groups of ocean surface gravity waves generate double-frequency seismic Scholte waves, as described by the Longuet-Higgins theory of microseism generation. We also extract P- and S-wave phases from the 2018-08-19 [Formula: see text] Fiji deep earthquake in the 0.01-1 Hz frequency band, though waveform fidelity is low at high frequencies. These results suggest significant potential of DAS in next-generation submarine seismic networks.
Project description:Wearable electronics used in smart clothing for healthcare monitoring or personalized identification is a new and fast-growing research topic. The challenge is that the electronics has to be simultaneously highly stretchable, mechanically robust and water-washable, which is unreachable for traditional electronics or previously reported stretchable electronics. Herein we report the wearable electronics of sliver nanowire (Ag-NW)/poly(dimethylsiloxane) (PDMS) nanocomposite which can meet the above multiple requirements. The electronics of Ag-NW/PDMS nanocomposite films is successfully fabricated by an original pre-straining and post-embedding (PSPE) process. The composite film shows a very high conductivity of 1.52 × 10(4) S cm(-1) and an excellent electrical stability with a small resistance fluctuation under a large stretching strain. Meanwhile, it shows a robust adhesion between the Ag-NWs and the PDMS substrate and can be directly machine-washed. These advantages make it a competitive candidate as wearable electronics for smart clothing applications.
Project description:In response to global aging, there have been improvements in healthcare, exercise therapy, health promotion, and other areas. There is a gradually increasing demand for such equipment for health purposes. The main purpose of smart clothing is to monitor the physical health status of the user and analyze the changes in physiological signals of the heart. Therefore, this study aimed to examine the factors that affect the measurement of the heart's physiological parameters and the users' comfort while wearing smart clothing as well as to validate the data obtained from smart clothing. This study examined the subjective feelings of users (aged 20-60 years) regarding smart clothing comfort (within 12 h); the median values were comfortable and above (3.4-4.5). The clothing was combined with elastic conductive fiber and spandex to decrease the relative movement of the fiber that acts as a sensor and increase the user's comfort. Future studies should focus on the optimization of the data obtained using smart clothing. In addition to its use in medical care and post-reconstructive surgery, smart clothing can be used for home care of older adults and infants.
Project description:There has been increased interest to develop protective fabrics and clothing for protecting the wearer from hazards such as chemical, biological, heat, UV, pollutants etc. Protective fabrics have been conventionally developed using a wide variety of techniques. However, these conventional protective fabrics lack breathability. For example, conventional protective fabrics offer good protection against water but have limited ability in removing the water vapor and moisture. Fibers and membranes fabricated using electrospinning have demonstrated tremendous potential to develop protective fabrics and clothing. These fabrics based on electrospun fibers and membranes have the potential to provide thermal comfort to the wearer and protect the wearer from wide variety of environmental hazards. This review highlights the emerging applications of electrospinning for developing such breathable and protective fabrics.
Project description:The marriage of textiles with artificial muscles to create smart textiles is attracting great attention from the scientific community and industry. Smart textiles offer many benefits including adaptive comfort and high conformity to objects while providing active actuation for desired motion and force. This paper introduces a new class of programmable smart textiles created from different methods of knitting, weaving, and sticking fluid-driven artificial muscle fibers. Mathematical models are developed to describe the elongation-force relationship of the knitting and weaving textile sheets, followed by experiments to validate the model effectiveness. The new smart textiles are highly flexible, conformable, and mechanically programmable, enabling multimodal motions and shape-shifting abilities for use in broader applications. Different prototypes of the smart textiles are created with experimental validations including various shape-changing instances such as elongation (up to 65%), area expansion (108%), radial expansion (25%), and bending motion. The concept of reconfiguring passive conventional fabrics into active structures for bio-inspired shape-morphing structures is also explored. The proposed smart textiles are expected to contribute to the progression of smart wearable devices, haptic systems, bio-inspired soft robotics, and wearable electronics.
Project description:Thermal ablation is achieved by delivering heat directly to tissue through a minimally invasive applicator. The therapy requires a temperature control between 50-100 °C since the mortality of the tumor is directly connected with the thermal dosimetry. Existing temperature monitoring techniques have limitations such as single-point monitoring, require costly equipment, and expose patients to X-ray radiation. Therefore, it is important to explore an alternative sensing solution, which can accurately monitor temperature over the whole ablated region. The work aims to propose a distributed fiber optic sensor as a potential candidate for this application due to the small size, high resolution, bio-compatibility, and temperature sensitivity of the optical fibers. The working principle is based on spatial multiplexing of optical fibers to achieve 3D temperature monitoring. The multiplexing is achieved by high-scattering, nanoparticle-doped fibers as sensing fibers, which are spatially separated by lower-scattering level of single-mode fibers. The setup, consisting of twelve sensing fibers, monitors tissue of 16 mm × 16 mm × 25 mm in size exposed to a gold nanoparticle-mediated microwave ablation. The results provide real-time 3D thermal maps of the whole ablated region with a high resolution. The setup allows for identification of the asymmetry in the temperature distribution over the tissue and adjustment of the applicator to follow the allowed temperature limits.
Project description:Restricted by the hierarchical and centralized system architecture, smart buildings face challenges such as limited adaptability and robustness, single application functionalities, and complex configurations. To address the above shortcomings, we learn from the activity patterns of natural bee swarms and propose Honeycomb, an open-source smart-building solution with fully distributed architecture. Honeycomb is a robust, flexible smart-building solution without any central server or global leader. An asynchronous leaderless spanning tree-based communication pattern is developed to generate and maintain the communication topology of Honeycomb in real time. Benefiting from this communication pattern, Honeycomb has plug-and-play ability. Various distributed applications are designed for building operating tasks and are deployed in a real Honeycomb prototype. The prototype demonstrates significant energy efficiency improvement from the control of the heating, ventilation, and air conditioning (HVAC) system with video-based occupancy information. Feedback on our Honeycomb prototype through questionnaires of users shows high acceptance of the controlled indoor environment.
Project description:BackgroundOver the past 2 decades, various desktop and mobile telemedicine systems have been developed to support communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based consultation. Previous research has tested this novel technology in different health care settings.ObjectiveThe aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding medical professionals' use of smart glasses in practice.MethodsWe conducted a literature search in 6 databases that cover research within both health care and computer science domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to review articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth analysis.ResultsAll of the reviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which had a high level of technology readiness for real-world use and deployment in care settings. The common system features used and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions. These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human factors and ergonomics, privacy and security issues, and organizational challenges.ConclusionsUser-centered system design, improved hardware performance, and software reliability are needed to realize the potential of smart glasses. More research is needed to examine and evaluate medical professionals' needs, preferences, and perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes.
Project description:Tensan silk, a natural fiber produced by the Japanese oak silk moth ( Antherea yamamai, abbreviated to A. yamamai), features superior characteristics, such as compressive elasticity and chemical resistance, when compared to the more common silk produced from the domesticated silkworm, Bombyx mori ( B. mori). In this study, the "structure-property" relationships within A. yamamai silk are disclosed from the different structural hierarchies, confirming the outstanding toughness as dominated by the distinct mesoscale fibrillar architectures. Inspired by this hierarchical construction, we fabricated A. yamamai silk-like regenerated B. mori silk fibers (RBSFs) with mechanical properties (extensibility and modulus) comparable to natural A. yamamai silk. These RBSFs were further functionalized to form conductive RBSFs that were sensitive to force and temperature stimuli for applications in smart textiles. This study provides a blueprint in exploiting rational designs from A. yamanmai, which is rare and expensive in comparison to the common and cost-effective B. mori silk to empower enhanced material properties.
Project description:Wearable bioelectronics are gaining extraordinary attention due to their capabilities to achieve continuous monitoring of human health status. However, mainstream manufacturing technologies, including photolithography and printing technology, limit current wearable bioelectronics on 2D planar structures with little surface area in contact with the body. It thus limits the amount of physiological information that current wearable bioelectronics could obtain. Furthermore, they need to be firmly attached to the body, affecting the wearing comfort. In this study, we leveraged the versatile thermal drawing process and developed a flexible microelectronic fiber with bioanalytical functions that could be woven into textiles as a new form of wearable bioelectronics. Within a single strand of fiber, we successfully integrated all-in-one multiplexed electrochemical sensing capabilities, with the sweat as the primary object. Adopting the laser micromachining technique, we developed biosensing functions on the longitudinal surface of the fiber with two sensing electrodes for Na+ and uric acid (UA), respectively, together with a pseudo reference electrode (p-RE). We carefully characterized the all-in-one multiplexed sensing performance of the fiber and demonstrated its successful application in sweat sensing based on its textile forms. The results show significant potential for application in wearable textiles for monitoring key health signals of humans.