Project description:Subducting plates release fluids as they plunge into Earth's mantle and occasionally rupture to produce intraslab earthquakes. It is debated whether fluids and earthquakes are directly related. By combining seismic observations and geodynamic models from western Greece, and comparing across other subduction zones, we find that earthquakes effectively track the flow of fluids from their slab source at >80 km depth to their sink at shallow (<40 km) depth. Between source and sink, the fluids flow updip under a sealed plate interface, facilitating intraslab earthquakes. In some locations, the seal breaks and fluids escape through vents into the mantle wedge, thereby reducing the fluid supply and seismicity updip in the slab. The vents themselves may represent nucleation sites for larger damaging earthquakes.
Project description:Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.
Project description:Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
Project description:Microbial life is widespread in the terrestrial subsurface and present down to several kilometers depth, but the energy sources that fuel metabolism in deep oligotrophic and anoxic environments remain unclear. In the deep crystalline bedrock of the Fennoscandian Shield at Olkiluoto, Finland, opposing gradients of abiotic methane and ancient seawater-derived sulfate create a terrestrial sulfate-methane transition zone (SMTZ). We used chemical and isotopic data coupled to genome-resolved metaproteogenomics to demonstrate active life and, for the first time, provide direct evidence of active anaerobic oxidation of methane (AOM) in a deep terrestrial bedrock. Proteins from Methanoperedens (formerly ANME-2d) are readily identifiable despite the low abundance (≤1%) of this genus and confirm the occurrence of AOM. This finding is supported by 13C-depleted dissolved inorganic carbon. Proteins from Desulfocapsaceae and Desulfurivibrionaceae, in addition to 34S-enriched sulfate, suggest that these organisms use inorganic sulfur compounds as both electron donor and acceptor. Zerovalent sulfur in the groundwater may derive from abiotic rock interactions, or from a non-obligate syntrophy with Methanoperedens, potentially linking methane and sulfur cycles in Olkiluoto groundwater. Finally, putative episymbionts from the candidate phyla radiation (CPR) and DPANN archaea represented a significant diversity in the groundwater (26/84 genomes) with roles in sulfur and carbon cycling. Our results highlight AOM and sulfur disproportionation as active metabolisms and show that methane and sulfur fuel microbial activity in the deep terrestrial subsurface.
Project description:The lithium cycling in the supra-subduction mantle wedge is crucial for understanding the generation of Li-rich magmas that may potentially source ore deposition in continental arcs. Here, we look from the mantle source perspective at the geological processes controlling the Li mobility in convergent margins, by characterizing a set of sub-arc mantle xenoliths from the southern Andes (Coyhaique, western Patagonia). The mineral trace element signatures and oxygen fugacity estimates (FMQ > + 3) in some of these peridotite xenoliths record the interaction with arc magmas enriched in fluid-mobile elements originally scavenged by slab dehydration. This subduction-related metasomatism was poorly effective on enhancing the Li inventory of the sub-arc lithospheric mantle, underpinning the inefficiency of slab-derived fluids on mobilizing Li through the mantle wedge. However, major and trace element compositions of mantle minerals in other xenoliths also record transient thermal and chemical anomalies associated with the percolation of slab window-related magmas, which exhibit an "adakite"-type geochemical fingerprint inherited by slab-derived melts produced during ridge subduction and slab window opening event. As these melts percolated through the shallow (7.2-16.8 kbar) and hot (952-1054 °C) lithospheric mantle wedge, they promoted the crystallization of metasomatic clinopyroxene having exceptionally high Li abundances (6-15 ppm). Numerical modeling shows that low degrees (< 10%) of partial melting of this Li-rich and fertile sub-arc lithospheric mantle generates primitive melts having two-fold Li enrichment (~13 ppm) compared with average subduction-zone basalts. Prolonged fractional crystallization of these melts produces extremely Li-enriched silicic rocks, which may stoke the Li inventory of mineralizing fluids in the shallow crust.
Project description:The effects of the composition and angle of the subducting slab and mantle wedge flow on tectonic and magmatic processes in island arcs and associated back-arcs are poorly understood. Here we analyse the ages and compositions of submarine lavas from the flanks and the floor of the back-arc Futuna Trough some 50 km east of Tanna Island in the New Hebrides arc front. Whereas >2.5 Ma-old back-arc lavas formed from an enriched mantle source strongly metasomatized by a slab component, the younger lavas show less slab input into a depleted mantle wedge. The input of the slab component decreased over the past 2.5 million years while the enriched mantle was replaced by depleted peridotite. The change of Futuna Trough lava compositions indicates rapid (10 s of km/million years) replacement of the mantle wedge by corner flow and slab steepening due to rollback, causing extensional stress and back-arc rifting in the past 2.5 million years.
Project description:Volatiles expelled from subducted plates promote melting of the overlying warm mantle, feeding arc volcanism. However, debates continue over the factors controlling melt generation and transport, and how these determine the placement of volcanoes. To broaden our synoptic view of these fundamental mantle wedge processes, we image seismic attenuation beneath the Lesser Antilles arc, an end-member system that slowly subducts old, tectonized lithosphere. Punctuated anomalies with high ratios of bulk-to-shear attenuation (Qκ-1/Qμ-1 > 0.6) and VP/VS (>1.83) lie 40 km above the slab, representing expelled fluids that are retained in a cold boundary layer, transporting fluids toward the back-arc. The strongest attenuation (1000/QS ~ 20), characterizing melt in warm mantle, lies beneath the back-arc, revealing how back-arc mantle feeds arc volcanoes. Melt ponds under the upper plate and percolates toward the arc along structures from earlier back-arc spreading, demonstrating how slab dehydration, upper-plate properties, past tectonics, and resulting melt pathways collectively condition volcanism.
Project description:We present results from high-pressure, high-temperature experiments that generate incipient carbonate melts at mantle conditions (~90 kilometers depth and temperatures between 750° and 1050°C). We show that these primitive carbonate melts can sequester sulfur in its oxidized form of sulfate, as well as base and precious metals from mantle lithologies of peridotite and pyroxenite. It is proposed that these carbonate sulfur-rich melts may be more widespread than previously thought and that they may play a first-order role in the metallogenic enhancement of localized lithospheric domains. They act as effective agents to dissolve, redistribute, and concentrate metals within discrete domains of the mantle and into shallower regions within Earth, where dynamic physicochemical processes can lead to ore genesis at various crustal depths.
Project description:Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island-based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this "seismic belt" occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting.
Project description:Chromate [Cr(VI)] contamination in groundwater is a global environmental challenge. Traditional elemental sulfur-based biotechnologies for Cr(VI) removal depend heavily on the synthesis of dissolved organic carbon to fuel heterotrophic Cr(VI) reduction, a bottleneck in the remediation process. Here we show an alternative approach by leveraging sulfur-disproportionating bacteria (SDB) inherent to groundwater ecosystems, offering a novel and efficient Cr(VI) removal strategy. We implemented SDB within a sulfur-packed bed reactor for treating Cr(VI)-contaminated groundwater, achieving a notable removal rate of 6.19 mg L-1 h-1 under oligotrophic conditions. We identified the chemical reduction of Cr(VI) via sulfide, produced through sulfur disproportionation, as a key mechanism, alongside microbial Cr(VI) reduction within the sulfur-based biosystem. Genome-centric metagenomic analysis revealed a symbiotic relationship among SDB, sulfur-oxidizing, and chromate-reducing bacteria within the reactor, suggesting that Cr(VI) detoxification by these microbial communities enhances the sulfur-disproportionation process. This research highlights the significance of sulfur disproportionation in the cryptic sulfur cycle in Cr(VI)-contaminated groundwater and proposes its practical application in groundwater remediation efforts.