Project description:We study resonant photonic-plasmonic coupling between a gold dipole nanoantenna and a silicon nanodisc supporting electric and magnetic dipolar Mie-type resonances. Specifically, we consider two different cases for the mode structure of the silicon nanodisc, namely spectrally separate and spectrally matching electric and magnetic dipolar Mie-type resonances. In the latter case, the dielectric nanoparticle scatters the far fields of a unidirectional Huygens' source. Our results reveal an anticrossing of the plasmonic dipole resonance and the magnetic Mie-type dipole resonance of the silicon nanodisc, accompanied by a clear signature of photonic-plasmonic mode hybridization in the corresponding mode profiles. These characteristics show that strong coupling is established between the two different resonant systems in the hybrid nanostructure. Furthermore, our results demonstrate that in comparison with purely metallic or dielectric nanostructures, hybrid metal-dielectric nanoresonators offer higher flexibility in tailoring the fractions of light which are transmitted, absorbed and reflected by the nanostructure over a broad range of parameters without changing its material composition. As a special case, highly asymmetric reflection and absorption properties can be achieved.This article is part of the themed issue 'New horizons for nanophotonics'.
Project description:We propose and experimentally demonstrate a high efficient circularly polarizing dichroism waveplate (CPDW) using a Si-based all-dielectric 2Dchiral metasurface. We demonstrate that the CPDW exhibits a unique dichroism in that it functions as a transmissive quarter waveplate for one of either left-or right-handed circularly polarized incident lightand a reflective mirror for the opposite polarization. The circular polarization dichroism (CPD = IRCP - ILCP) in transmission at wavelength ~1.5 μm reaches 97% and the extinction ratio (ER = IRCP/ILCP) is as high as 345:1. Experimental fabrications and measurements of the proposed all-dielectric metasurface are implemented and found to be in excellent agreement with the simulations. The proposed all-dielectric chiral metasurface is of advantages of high-dichroism, easy-fabrication and standard semiconductor fabrication techniques compatible, which could lead to enhanced security in fiber and free-space communications, as well as imaging and sensing applications for circularly polarized light with a highly integrated photonic platform.
Project description:Vibrational circular dichroism (VCD) spectroscopy has emerged as a powerful platform to quantify chirality, a vital biological property that performs a pivotal role in the metabolism of life organisms. With a photoelastic modulator (PEM) integrated into an infrared spectrometer, the differential response of a sample to the direction of circularly polarized light can be used to infer conformation handedness. However, these optical components inherently exhibit chromatic behavior and are typically optimized at discrete spectral frequencies. Advancements of discrete frequency infrared (DFIR) spectroscopic microscopes in spectral image quality and data throughput are promising for use toward analytical VCD measurements. Utilizing the PEM advantages incorporated into a custom-built QCL microscope, we demonstrate a point scanning VCD instrument capable of acquiring spectra rapidly across all fingerprint region wavelengths in transmission configuration. Moreover, for the first time, we also demonstrate the VCD imaging performance of our instrument for site-specific chirality mapping of biological tissue samples. This study offers some insight into future possibilities of examining small, localized changes in tissue that have major implications for systemic diseases and their progression, while also laying the groundwork for additional modeling and validation in advancing the capability of VCD spectroscopy and imaging.
Project description:The flexibility of a molecule has important consequences on its function and application. Vibrational Circular Dichroism (VCD) is intrinsically an excellent experimental technique to get a hold on this flexibility as it is highly sensitive to key conformational details and able to distinguish rapidly interconverting conformers. One of the major challenges in analyzing the spectra by comparison to theoretical predictions is the uncertainty in the computed energies of the multitude of conformations. This uncertainty also affects the reliability of the stereochemical assignment it is normally used for. We present here a novel approach that explicitly takes the energy uncertainties into account in a genetic algorithm based method that fits calculated to the experimental spectra. We show that this approach leads to significant improvements over previously used methodologies. Importantly, statistical validation studies provide quantitative measures for the reliability of relevant parameters used such as the energy uncertainty and the extent to which conformational heterogeneity can be determined. Similarly, quantitative measures can be obtained for the possibility that the flexibility that is introduced in the fit might lead to an incorrect assignment of the stereochemistry. These results break new ground for different techniques based on VCD to elucidate conformational flexibility.
Project description:Vibrational circular dichroism (VCD) studies are reported on a chiral compound in which a fullerene C60 moiety is used as an electron acceptor and local VCD amplifier for an alanine-based peptide chain. Four redox states are investigated in this study, of which three are reduced species that possess low-lying electronic states as confirmed by UV/Vis spectroelectrochemistry. VCD measurements in combination with (TD)DFT calculations are used to investigate (i) how the low-lying electronic states of the reduced species modulate the amplification of VCD signals, (ii) how this amplification depends on the distance between oscillator and amplifier, and (iii) how the spatial extent of the amplifier influences amplification. These results pave the way for further development of tailored molecular VCD amplifiers.
Project description:Circular dichroism (CD) spectroscopy has been widely demonstrated for detecting chiral molecules. However, the determination of chiral mixtures with various concentrations and enantiomeric ratios can be a challenging task. To solve this problem, we report an enhanced vibrational circular dichroism (VCD) sensing platform based on plasmonic chiral metamaterials, which presents a 6-magnitude signal enhancement with a selectivity of chiral molecules. Guided by coupled-mode theory, we leverage both in-plane and out-of-plane symmetry-breaking structures for chiral metamaterial design enabled by a two-step lithography process, which increases the near-field coupling strengths and varies the ratio between absorption and radiation loss, resulting in improved chiral light-matter interaction and enhanced molecular VCD signals. Besides, we demonstrate the thin-film sensing process of BSA and β-lactoglobulin proteins, which contain secondary structures α-helix and β-sheet and achieve a limit of detection down to zeptomole level. Furthermore, we also, for the first time, explore the potential of enhanced VCD spectroscopy by demonstrating a selective sensing process of chiral mixtures, where the mixing ratio can be successfully differentiated with our proposed chiral metamaterials. Our findings improve the sensing signal of molecules and expand the extractable information, paving the way toward label-free, compact, small-volume chiral molecule detection for stereochemical and clinical diagnosis applications.
Project description:Steroid hormone molecules may exhibit very different functionalities based on the associated functional groups and their 3D arrangements in space, i.e., absolute configurations and conformations. Infrared (IR) and vibrational circular dichroism (VCD) spectra of four different steroid hormones, namely dehydroepiandrosterone (DHEA), 17α-methyltestosterone (MTTT), (16α,17)-epoxyprogesterone (Epoxy-P4), and dehydroepiandrosterone acetate (AcO-DHEA), were measured in deuterated dimethyl sulfoxide and some also in carbon tetrachloride. Extensive conformational searches were carried out using the recent developed conformer-rotamer ensemble sampling tool (CREST) which also accounts for solvent effects using an implicit solvation model. All the CREST conformational candidates were then reoptimized at the B3LYP-D3BJ/def2-TZVPD with the PCM of solvent. The good agreements between the experimental IR and VCD spectra and the theoretical simulations provide a conclusive information about their conformational distribution and absolute configurations. The experimental and theoretical IR and VCD spectra of AcO-DHEA in the carbonyl and alkene stretching region showed some discrepancies, and the possible causes related to solvent effects, large amplitude motions and levels of theory used in the modelling were explored in detail. As part of the investigation, additional calculations at the B3LYP-D3BJ/6-31++G (2d,p) and B3LYP-D3BJ/cc-pVTZ levels, as well as some 'mixed' calculations with the double-hybrid functional B2PLYP-D3 were also carried out. The results indicate that the double-hybrid functional is important for predicting the correct IR band pattern in the carbonyl and alkene stretching region.
Project description:Enhanced light-matter interactions are the basis of surface-enhanced infrared absorption (SEIRA) spectroscopy, and conventionally rely on plasmonic materials and their capability to focus light to nanoscale spot sizes. Phonon polariton nanoresonators made of polar crystals could represent an interesting alternative, since they exhibit large quality factors, which go far beyond those of their plasmonic counterparts. The recent emergence of van der Waals crystals enables the fabrication of high-quality nanophotonic resonators based on phonon polaritons, as reported for the prototypical infrared-phononic material hexagonal boron nitride (h-BN). In this work we use, for the first time, phonon-polariton-resonant h-BN ribbons for SEIRA spectroscopy of small amounts of organic molecules in Fourier transform infrared spectroscopy. Strikingly, the interaction between phonon polaritons and molecular vibrations reaches experimentally the onset of the strong coupling regime, while numerical simulations predict that vibrational strong coupling can be fully achieved. Phonon polariton nanoresonators thus could become a viable platform for sensing, local control of chemical reactivity and infrared quantum cavity optics experiments.
Project description:Cyclic peptides are a promising class of compounds for next-generation antibiotics as they may provide new ways of limiting antibiotic resistance development. Although their cyclic structure will introduce some rigidity, their conformational space is large and they usually have multiple chiral centers that give rise to a wide range of possible stereoisomers. Chiroptical spectroscopies such as vibrational circular dichroism (VCD) are used to assign stereochemistry and discriminate enantiomers of chiral molecules, often in combination with electronic structure methods. The reliable determination of the absolute configuration of cyclic peptides will require robust computational methods than can identify all significant conformers and their relative population and reliably assign their stereochemistry from their chiroptical spectra by comparison with ab initio calculated spectra. We here present a computational protocol for the accurate calculation of the VCD spectra of a series of flexible cyclic oligopeptides. The protocol builds on the Conformer-Rotamer Ensemble Sampling Tool (CREST) developed by Grimme and co-workers ( Phys. Chem. Chem. Phys. 2020, 22, 7169-7192 and J. Chem. Theory. Comput. 2019, 15, 2847-2862) in combination with postoptimizations using B3LYP and moderately sized basis sets. Our recommended computational protocol for the computation of VCD spectra of cyclic oligopeptides consists of three steps: (1) conformational sampling with CREST and tight-binding density functional theory (xTB); (2) energy ranking based on single-point energy calculations as well as geometry optimization and VCD calculations of conformers that are within 2.5 kcal/mol of the most stable conformer using B3LYP/6-31+G*/CPCM; and (3) VCD spectra generation based on Boltzmann weighting with Gibbs free energies. Our protocol provides a feasible basis for generating VCD spectra also for larger cyclic peptides of biological/pharmaceutical interest and can thus be used to investigate promising compounds for next-generation antibiotics.
Project description:Optical spectroscopy can be used to quickly characterise the structural properties of individual molecules. However, it cannot be applied to biological assemblies because light is generally blind to the spatial distribution of the component molecules. This insensitivity arises from the mismatch in length scales between the assemblies (a few tens of nm) and the wavelength of light required to excite chromophores (≥150 nm). Consequently, with conventional spectroscopy, ordered assemblies, such as the icosahedral capsids of viruses, appear to be indistinguishable isotropic spherical objects. This limits potential routes to rapid high-throughput portable detection appropriate for point-of-care diagnostics. Here, we demonstrate that chiral electromagnetic (EM) near fields, which have both enhanced chiral asymmetry (referred to as superchirality) and subwavelength spatial localisation (∼10 nm), can detect the icosahedral structure of virus capsids. Thus, they can detect both the presence and relative orientation of a bound virus capsid. To illustrate the potential uses of the exquisite structural sensitivity of subwavelength superchiral fields, we have used them to successfully detect virus particles in the complex milieu of blood serum.