Unknown

Dataset Information

0

TSG-6 Inhibits the NF-κB Signaling Pathway and Promotes the Odontogenic Differentiation of Dental Pulp Stem Cells via CD44 in an Inflammatory Environment.


ABSTRACT: In pulpitis, dentinal restorative processes are considerably associated with undifferentiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6), DPSCs were cultured in an inflammation-inducing solution. Real-time polymerase chain reaction and Western blotting were performed to measure the expression levels of nuclear factor kappa B (NF-κB) and odonto/osteogenic differentiation markers, respectively. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to assess cell proliferation and activity. Subcutaneous ectopic osteogenesis and mandibular bone cultures were performed to assess the effects of TSG-6 in vivo. The expression levels of odonto/osteogenic markers were higher in TSG-6-pre-treated DPSCs than nontreated DPSCs, whereas NF-κB-related proteins were lower after the induction of inflammation. An anti-CD44 antibody counteracted the rescue effect of TSG-6 on DPSC activity and mineralization in an inflammatory environment. Exogenous administration of TSG-6 enhanced the anti-inflammatory properties of DPSCs and partially restored their mineralization function by inhibiting NF-κB signaling. The mechanism of action of TSG-6 was attributed to its interaction with CD44. These findings reveal novel mechanisms by which DPSCs counter inflammation and provide a basis for the treatment of pulpitis.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC10968114 | biostudies-literature | 2024 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

TSG-6 Inhibits the NF-κB Signaling Pathway and Promotes the Odontogenic Differentiation of Dental Pulp Stem Cells via CD44 in an Inflammatory Environment.

Wang Ying Y   Xie Yulang Y   Xue Ningning N   Xu Hao H   Zhang Dunfang D   Ji Ning N   Chen Qianming Q  

Biomolecules 20240319 3


In pulpitis, dentinal restorative processes are considerably associated with undifferentiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6), DPSCs were cultured in an inflammation-inducing solution. Real-time polymerase chain reaction and Western blotting were perfor  ...[more]

Similar Datasets

| S-EPMC9705152 | biostudies-literature
| S-EPMC7337168 | biostudies-literature
| S-EPMC7521281 | biostudies-literature
| S-EPMC7482017 | biostudies-literature
| S-EPMC8586344 | biostudies-literature
| S-EPMC5029108 | biostudies-literature
| S-EPMC7336240 | biostudies-literature
| S-EPMC4507025 | biostudies-literature
| S-EPMC5821879 | biostudies-literature
| S-EPMC8621711 | biostudies-literature