Project description:BackgroundDengue Fever (DF) is a viral disease primarily transmitted by Aedes (Ae.) aegypti mosquitoes. Outbreaks in Eastern Ethiopia were reported during 2014-2016. In May 2017, we investigated the first suspected DF outbreak from Kabridahar Town, Somali region (Eastern Ethiopia) to describe its magnitude, assess risk factors, and implement control measures.MethodsSuspected DF cases were defined as acute febrile illness plus ≥2 symptoms (headache, fever, retro-orbital pain, myalgia, arthralgia, rash, or hemorrhage) in Kabridahar District residents. All reported cases were identified through medical record review and active searches. Severe dengue was defined as DF with severe organ impairment, severe hemorrhage, or severe plasma leakage. We conducted a neighborhood-matched case-control study using a subset of suspected cases and conveniently-selected asymptomatic community controls and interviewed participants to collect demographic and risk factor data. We tested sera by RT-PCR to detect dengue virus (DENV) and identify serotypes. Entomologists conducted mosquito surveys at community households to identify species and estimate larval density using the house index (HI), container index (CI) and Breteau index (BI), with BI≥20 indicating high density.ResultsWe identified 101 total cases from May 12-31, 2017, including five with severe dengue (one death). The attack rate (AR) was 17/10,000. Of 21 tested samples, 15 (72%) were DENV serotype 2 (DENV 2). In the case-control study with 50 cases and 100 controls, a lack of formal education (AOR [Adjusted Odds Ratio] = 4.2, 95% CI [Confidence Interval] 1.6-11.2) and open water containers near the home (AOR = 3.0, 95% CI 1.2-7.5) were risk factors, while long-lasting insecticide treated-net (LLITN) usage (AOR = 0.21, 95% CI 0.05-0.79) was protective. HI and BI were 66/136 (49%) and 147 per 100 homes (147%) respectively, with 151/167 (90%) adult mosquitoes identified as Ae. aegypti.ConclusionThe epidemiologic, entomologic, and laboratory investigation confirmed a DF outbreak. Mosquito indices were far above safe thresholds, indicating inadequate vector control. We recommended improved vector surveillance and control programs, including best practices in preserving water and disposal of open containers to reduce Aedes mosquito density.
Project description:The refugee crisis in Europe continues to persist despite recent data, showing a drop in the number of refugees seeking asylum. The EU has called this as “an unprecedented displacement crisis” and has aimed at devising a comprehensive approach to tackle it, which has been widely criticized. Concerns about public healthcare aspects of the crisis have permanently entered the media and policy discourse even though no systematic association between migration and the importation of infectious diseases has been recorded. In this context, the literature has not filled the existing gap between discourse and evidence, and almost no publications with reliable empirical data exist, both thematic (epidemiology) and geographical (Eastern Europe and Bulgaria). Among the existing publications, the focus has been on TB and HIV (Odone et al., Euro J Public Health 25(3):506–512, 2015). In light of this, the aim of this research is to contribute to the debate by providing an overview of the refugee situation in Bulgaria, as a primary entry-point for refugees entering the EU. In order to achieve this, the article analyses the case of the refugee camp in city of Harmanly, close to the Bulgarian-Turkish border, and assesses the public health risks related to this specific situation. Based on a study of 128 patients with different symptoms we aim to draw wider implications about the linkages between public health and migration. The in-depth review of this specific case shows that both the probability and impact of migration on public health increases when the hosting country is relatively poor, the domestic public healthcare system is not efficient, and there is lack of trust in the government and public services. The study contributes to understanding better these risks in order to identify potential mitigation strategies in the region and the EU as a whole.
Project description:Until 2004, identification of Nipah virus (NV)-like outbreaks in Bangladesh was based on serology. We describe the genetic characterization of a new strain of NV isolated during outbreaks in Bangladesh (NV-B) in 2004, which confirms that NV was the etiologic agent responsible for these outbreaks.
Project description:We retrieved Nipah virus (NiV) sequences from 4 human and 3 fruit bat (Pteropus medius) samples from a 2018 outbreak in Kerala, India. Phylogenetic analysis demonstrated that NiV from humans was 96.15% similar to a Bangladesh strain but 99.7%-100% similar to virus from Pteropus spp. bats, indicating bats were the source of the outbreak.
Project description:During January and February 2001, an outbreak of febrile illness associated with altered sensorium was observed in Siliguri, West Bengal, India. Laboratory investigations at the time of the outbreak did not identify an infectious agent. Because Siliguri is in close proximity to Bangladesh, where outbreaks of Nipah virus (NiV) infection were recently described, clinical material obtained during the Siliguri outbreak was retrospectively analyzed for evidence of NiV infection. NiV-specific immunoglobulin M (IgM) and IgG antibodies were detected in 9 of 18 patients. Reverse transcription-polymerase chain reaction (RT-PCR) assays detected RNA from NiV in urine samples from 5 patients. Sequence analysis confirmed that the PCR products were derived from NiV RNA and suggested that the NiV from Siliguri was more closely related to NiV isolates from Bangladesh than to NiV isolates from Malaysia. NiV infection has not been previously detected in India.
Project description:Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.
Project description:Human infections with Nipah virus in Malaysia and Bangladesh are associated with markedly different patterns of transmission and pathogenicity. To compare the 2 strains, we conducted an in vivo study in which 2 groups of ferrets were oronasally exposed to either the Malaysia or Bangladesh strain of Nipah virus. Viral shedding and tissue tropism were compared between the 2 groups. Over the course of infection, significantly higher levels of viral RNA were recovered from oral secretions of ferrets infected with the Bangladesh strain. Higher levels of oral shedding of the Bangladesh strain of Nipah virus might be a key factor in onward transmission in outbreaks among humans.