Project description:Aflatoxins are naturally occurring high-toxic secondary metabolites, which cause worldwide environmental contaminations and wastes of food and feed resources and severely threaten human health. Thus, the highly efficient methods and technologies for detoxification of aflatoxins are urgently needed in a long term. In this work, we report the construction of recombinant Kluyveromyces lactis strains GG799(pKLAC1-Phsmnp), GG799(pKLAC1-Plomnp), GG799(pKLAC1-Phcmnp), and then the food-grade expression of the three manganese peroxidases in these strains, followed by the degradation of aflatoxin B1 (AFB1) using the fermentation supernatants. The expression of the manganese peroxidases was achieved in a food-grade manner since Kluyveromyces lactis is food-safe and suitable for application in food or feed industries. The inducible expression process of the optimal recombinant strain GG799(pKLAC1-Phcmnp) and the aflatoxin B1 degradation process were both optimized in detail. After optimization, the degradation ratio reached 75.71%, which was an increase of 49.86% compared to the unoptimized results. The degradation product was analyzed and determined to be AFB1-8,9-dihydrodiol. The recombinant strain GG799(pKLAC1-Phcmnp) supernatants degraded more than 90% of AFB1 in the peanut samples after twice treatments. The structural computational analysis for further mutagenesis of the enzyme PhcMnp was also conducted in this work. The food-grade recombinant yeast strain and the enzyme PhcMnp have potential to be applied in food or feed industries.
Project description:BackgroundIn order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis.ResultsAfter expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin-induced reduction in particle size and crystallinity resulted in high cellulose hydrolysis rates.ConclusionsRecombinant swollenin can be easily produced with the robust yeast K. lactis. Moreover, swollenin induces deagglomeration of cellulose agglomerates as well as amorphogenesis (decrystallization). For the first time, this study quantifies and elucidates in detail how swollenin affects different cellulosic substrates and their hydrolysis.
Project description:Zearalenone (ZEA) is an estrogenic and ochratoxin A (OTA) is a hepatotoxic Fusarium mycotoxin commonly seen in cereals and fruits products. No previous investigation has studied on a single platform for the multi degradation mycotoxin. The current study aimed to investigate the bifunctional activity of a novel fusion recombinant. We have generated a recombinant fusion enzyme (ZHDCP) by combining two single genes named zearalenone hydrolase (ZHD) and carboxypeptidase (CP) in frame deletion by crossover polymerase chain reaction (PCR). We identified enzymatic properties and cell cytotoxicity assay of ZHDCP enzyme. Our findings have demonstrated that ZEA was completely degraded to the non-toxic product in 2 h by ZHDCP enzyme at an optimum pH of 7 and a temperature of 35 °C. For the first time, it was found out that ZEA 60% was degraded by CP degrades in 48 h. Fusion ZHDCP and CP enzyme were able to degrade 100% OTA in 30 min at pH 7 and temperature 30 °C. ZEA- and OTA-induced cell death and increased cell apoptosis rate and regulated mRNA expression of Sirt1, Bax, Bcl2, Caspase3, TNFα, and IL6 genes. Our novel findings demonstrated that the fusion enzyme ZHDCP possess bifunctional activity (degrade OTA and ZEA), and it could be used to degrade more mycotoxins.
Project description:BackgroundThe Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes. So far, strain manipulation of K. lactis by homologous recombination was hampered by the high rate of non-homologous end-joining.ResultsSelection for growth on lactose was applied to target the insertion of heterologous genes downstream of the LAC4 promoter into the K. lactis genome and found to yield high numbers of positive transformants. Concurrent reconstitution of the β-galactosidase gene indicated the desired integration event of the expression cassette, and β-galactosidase activity measurements were used to monitor gene expression for strain improvement and fermentation optimization. The system was particularly improved by usage of a cell lysis resistant strain, VAK367-D4, which allowed for protein accumulation in long-term fermentation. Further optimization was achieved by increased gene dosage of KlGAL4 encoding the activator of lactose and galactose metabolic genes that led to elevated transcription rates. Pilot experiments were performed with strains expressing a single-chain antibody fragment (scFvox) and a viral envelope protein (BVDV-E2), respectively. scFvox was shown to be secreted into the culture medium in an active, epitope-binding form indicating correct processing and protein folding; the E2 protein could be expressed intracellularly. Further data on the influence of protein toxicity on batch fermentation and potential post-transcriptional bottlenecks in protein accumulation were obtained.ConclusionsA novel Kluyveromyces lactis host-vector system was developed that places heterologous genes under the control of the chromosomal LAC4 promoter and that allows monitoring of its transcription rates by β-galactosidase measurement. The procedure is rapid and efficient, and the resulting recombinant strains contain no foreign genes other than the gene of interest. The recombinant strains can be grown non-selectively in rich medium and stably maintained even when the gene product exerts protein toxicity.
Project description:Hyaluronic Acid (HA) is a biopolymer composed by the monomers Glucuronic Acid (GlcUA) and N-Acetyl Glucosamine (GlcNAc). It has a broad range of applications in the field of medicine, being marketed between USD 1000-5000/kg. Its primary sources include extraction of animal tissue and fermentation using pathogenic bacteria. However, in both cases, extensive purification protocols are required to prevent toxin contamination. In this study, aiming at creating a safe HA producing microorganism, the generally regarded as safe (GRAS) yeast Kluyveroymyces lactis is utilized. Initially, the hasB (UDP-Glucose dehydrogenase) gene from Xenopus laevis (xlhasB) is inserted. After that, four strains are constructed harboring different hasA (HA Synthase) genes, three of humans (hshasA1, hshasA2, and hshasA3) and one with the bacteria Pasteurella multocida (pmhasA). Transcript values analysis confirms the presence of hasA genes only in three strains. HA production is verified by scanning electron microscopy in the strain containing the pmHAS isoform. The pmHAS strain is grown in a 1.3 l bioreactor operating in a batch mode, the maximum HA levels are 1.89 g/L with a molecular weight of 2.097 MDa. This is the first study that reports HA production in K. lactis and it has the highest HA titers reported among yeast.
Project description:Glucose phosphorylating enzymes are crucial in the regulation of basic cellular processes, including metabolism and gene expression. Glucokinases and hexokinases provide a pool of phosphorylated glucose in an adenosine diphosphate (ADP)- and ATP-dependent manner to shape the cell metabolism. The glucose processing enzymes from Kluyveromyces lactis are poorly characterized despite the emerging contribution of this yeast strain to industrial and laboratory scale biotechnology. The first reports on K. lactis glucokinase (KlGlk1) positioned the enzyme as an essential component required for glucose signaling. Nevertheless, no biochemical and structural information was available until now. Here, we present the first crystal structure of KlGlk1 together with biochemical characterization, including substrate specificity and enzyme kinetics. Additionally, comparative analysis of the presented structure and the prior structures of lactis hexokinase (KlHxk1) demonstrates the potential transitions between open and closed enzyme conformations upon ligand binding.
Project description:The food enzyme chymosin (EC 3.4.23.4) is produced with the genetically modified Kluyveromyces lactis strain CHY by DSM Food Specialties B.V. It is intended to be used in milk processing for cheese production and for production of fermented milk products. Dietary exposure was estimated to be up to 0.69 mg total organic solids (TOS)/kg body weight (bw) per day in European populations. The production strain contains multiple copies of known antimicrobial resistance genes and consequently, it does not fully fulfil the requirements for the qualified presumption of safety (QPS) approach to safety assessment. However, considering the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. As no other concerns arising from the microbial source and its subsequent genetic modification or from the manufacturing process have been identified, the Panel considered that toxicological tests were not needed for the assessment of this food enzyme. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched and four matches were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure, although unlikely, cannot be excluded, particularly for individuals sensitised to cedar pollen allergens. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Project description:Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were cloned from Kluyveromyces lactis and shown to functionally complement the corresponding deletion in S. cerevisiae. Surprisingly, deletion of the single K. lactis arginase gene KlCAR1 did not completely abolish growth on arginine as nitrogen source. Growth rate of the deletion mutant strongly increased during serial transfer in shake-flask cultures. A combination of RNAseq-based transcriptome analysis and (13)C-(15)N-based flux analysis was used to elucidate the arginase-independent pathway. Isotopic (13)C(15)N-enrichment in ?-aminobutyrate revealed succinate as the entry point in the TCA cycle of the alternative pathway. Transcript analysis combined with enzyme activity measurements indicated increased expression in the Klcar1? mutant of a guanidinobutyrase (EC.3.5.3.7), a key enzyme in a new pathway for arginine degradation. Expression of the K. lactis?KLLA0F27995g (renamed KlGBU1) encoding guanidinobutyrase enabled S. cerevisiae to use guanidinobutyrate as sole nitrogen source and its deletion in K. lactis almost completely abolish growth on this nitrogen source. Phylogenetic analysis suggests that this enzyme activity is widespread in fungi.
Project description:BackgroundGene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism.Principal findingsOur results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs). This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1), while catabolic substrates are accumulated in the cytosol (Bat2). Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition.ConclusionsOur study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the biosynthetic and catabolic roles of the ancestral BCAT in two isozymes improving BCAAs metabolism and constituting an adaptation to facultative metabolism.
Project description:The food enzyme chymosin (EC 3.4.23.4) is produced with the genetically modified Kluyveromyces lactis strain CIN by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its recombinant DNA. It is intended to be used in milk processing for cheese production and for the production of fermented milk products. Dietary exposure was estimated to be up to 0.73 mg total organic solids (TOS)/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,000 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, results in a margin of exposure of at least 1,300. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched for and four matches were found. The Panel considered that under the intended conditions of use the risk of allergic sensitisation and elicitation reactions by dietary exposure, although unlikely, cannot be excluded, particularly for individuals sensitised to cedar pollen allergens. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.