Unknown

Dataset Information

0

Enhanced therapeutic potential of antibody fragment via IEDDA-mediated site-specific albumin conjugation.


ABSTRACT:

Background

The use of single-chain variable fragments (scFvs) for treating human diseases, such as cancer and immune system disorders, has attracted significant attention. However, a critical drawback of scFv is its extremely short serum half-life, which limits its therapeutic potential. Thus, there is a critical need to prolong the serum half-life of the scFv for clinical applications. One promising serum half-life extender for therapeutic proteins is human serum albumin (HSA), which is the most abundant protein in human serum, known to have an exceptionally long serum half-life. However, conjugating a macromolecular half-life extender to a small protein, such as scFv, often results in a significant loss of its critical properties.

Results

In this study, we conjugated the HSA to a permissive site of scFv to improve pharmacokinetic profiles. To ensure minimal damage to the antigen-binding capacity of scFv upon HSA conjugation, we employed a site-specific conjugation approach using a heterobifunctional crosslinker that facilitates thiol-maleimide reaction and inverse electron-demand Diels-Alder reaction (IEDDA). As a model protein, we selected 4D5scFv, derived from trastuzumab, a therapeutic antibody used in human epithermal growth factor 2 (HER2)-positive breast cancer treatment. We introduced a phenylalanine analog containing a very reactive tetrazine group (frTet) at conjugation site candidates predicted by computational methods. Using the linker TCO-PEG4-MAL, a single HSA molecule was site-specifically conjugated to the 4D5scFv (4D5scFv-HSA). The 4D5scFv-HSA conjugate exhibited HER2 binding affinity comparable to that of unmodified 4D5scFv. Furthermore, in pharmacokinetic profile in mice, the serum half-life of 4D5scFv-HSA was approximately 12 h, which is 85 times longer than that of 4D5scFv.

Conclusions

The antigen binding results and pharmacokinetic profile of 4D5scFv-HSA demonstrate that the site-specifically albumin-conjugated scFv retained its binding affinity with a prolonged serum half-life. In conclusion, we developed an effective strategy to prepare site-specifically albumin-conjugated 4D5scFv, which can have versatile clinical applications with improved efficacy.

SUBMITTER: Go EB 

PROVIDER: S-EPMC10996255 | biostudies-literature | 2024 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced therapeutic potential of antibody fragment via IEDDA-mediated site-specific albumin conjugation.

Go Eun Byeol EB   Lee Jae Hun JH   Cho Jeong Haeng JH   Kwon Na Hyun NH   Choi Jong-Il JI   Kwon Inchan I  

Journal of biological engineering 20240404 1


<h4>Background</h4>The use of single-chain variable fragments (scFvs) for treating human diseases, such as cancer and immune system disorders, has attracted significant attention. However, a critical drawback of scFv is its extremely short serum half-life, which limits its therapeutic potential. Thus, there is a critical need to prolong the serum half-life of the scFv for clinical applications. One promising serum half-life extender for therapeutic proteins is human serum albumin (HSA), which is  ...[more]

Similar Datasets

| S-EPMC7898269 | biostudies-literature
| S-EPMC7906296 | biostudies-literature
| S-EPMC9921355 | biostudies-literature
| S-EPMC5740134 | biostudies-literature
| S-EPMC8308878 | biostudies-literature
| S-EPMC7238188 | biostudies-literature
| S-EPMC5744088 | biostudies-other
| S-EPMC10545826 | biostudies-literature
| S-EPMC6414842 | biostudies-literature
| S-EPMC8085887 | biostudies-literature