Project description:BackgroundThe 22q11.2 deletion syndrome (22q11.2DS) is the most common contiguous microdeletion affecting humans and exhibits extreme phenotypic heterogeneity. Patients can manifest any combination of comorbidities including congenital heart disease, hypoparathyroidism, cleft palate, kidney abnormalities, neurodevelopmental disorders, and immune dysfunction. Immunodeficiency is present in the majority of patients with 22q11.2DS and is the second leading cause of death in these patients. Knowing the genetic determinants of immune dysfunction will aid in prognostication and potentially novel treatments.MethodsWe performed exome sequencing and gene-based variant association analysis on 31 deeply phenotyped individuals with the canonical 3Mb 22q11.2 deletion to identify what genes outside the 22q11.2 locus may be modifying the immune dysregulated phenotype. Immunophenotyping was performed using preexisting medical data and a novel scoring system developed from numerous clinical laboratory values including immunoglobulin levels, lymphocyte transformation to antigens (LTA), lymphocyte transformation to mitogens (LTM), and peripheral blood flow cytometry. Immunophenotypic scoring was validated against newborn screening T-cell receptor excision circle (TREC) results.ResultsRare DNA variants in transcriptional regulators involved in retinoic acid signaling (NCOR2, OMIM *600848 and EP300, OMIM *602700) were found to be associated with immunophenotype.ConclusionThe expression of TBX1, which seems to confer the major phenotypic features of 22q11.2DS, is regulated via retinoic acid signaling, and alterations in retinoic acid signaling during embryonic development can lead to phenocopies of 22q11.2DS. These observations support the hypothesis that genetic modifiers outside the microdeletion locus may influence the immune function in 22q11.2DS patients.
Project description:Palatal anomalies are one of the identifying features of 22q11.2 deletion syndrome (22q11.2DS) affecting about one third of patients. To identify genetic variants that increase the risk of cleft or palatal anomalies in 22q11.2DS patients, we performed a candidate gene association study in 101 patients with 22q11.2DS genotyped with the Affymetrix genome-wide human SNP array 6.0.Patients from Children's Hospital of Philadelphia, USA and Wilhelmina Children's Hospital Utrecht, The Netherlands were stratified based on palatal phenotype (overt cleft, submucosal cleft, bifid uvula). SNPs in 21 candidate genes for cleft palate were analyzed for genotype-phenotype association. In addition, TBX1 sequencing was carried out. Quality control and association analyses were conducted using the software package PLINK.Genotype and phenotype data of 101 unrelated patients (63 non-cleft subjects (62.4%), 38 cleft subjects (37.6%)) were analyzed. A Total of 39 SNPs on 10 genes demonstrated a p-value ?0.05 prior to correction. The most significant SNPs were found on FGF10. However none of the SNPs remained significant after correcting for multiple testing.Although these results are promising, analysis of additional samples will be required to confirm that variants in these regions influence risk for cleft palate or palatal anomalies in 22q11.2DS patients.
Project description:Deletions within 22q11.2 are one of the most common microdeletions studied. We report a case of central 22q11.2 deletion with abnormal dentition, a feature not previously described in this condition. Although the diagnosis of central 22q11.2 deletion syndrome requires genetic testing, we aim to facilitate clinical recognition, expediting diagnosis.
Project description:22q11.2 Deletion syndrome has become an important model for understanding the pathophysiology of neurodevelopmental conditions, particularly schizophrenia which develops in about 20-25% of individuals with a chromosome 22q11.2 microdeletion. From the initial discovery of the syndrome, associated developmental delays made it clear that changes in brain development were a key part of the expression. Once patients were followed through childhood into adult years, further neurobehavioural phenotypes became apparent, including a changing cognitive profile, anxiety disorders and seizure diathesis. The variability of expression is as wide as for the myriad physical features associated with the syndrome, with the addition of evolving phenotype over the developmental trajectory. Notably, variability appears unrelated to length of the associated deletion. Several mouse models of the deletion have been engineered and are beginning to reveal potential molecular mechanisms for the cognitive and behavioural phenotypes observable in animals. Both animal and human studies hold great promise for further discoveries relevant to neurodevelopment and associated cognitive, behavioural and psychiatric disorders.
Project description:The clinical expression of 22q11.2 deletion syndrome (22q11.2 DS) is extremely variable, as patients can present with recurrent or severe infections, immune dysregulation, atopic diseases, or extra-immunological manifestations. The immunological background underlying the different disease manifestations is not completely elucidated. The aim of this study was to identify the immunophenotypic peculiarities of 22q11.2 DS patients presenting with different disease expressions. This study included 34 patients with 22q11.2 DS, divided into three groups according to the clinical phenotype: isolated extra-immunological manifestations (G1), infectious phenotype with increased/severe infections (G2), and immune dysregulation (G3). The patients underwent extended immunophenotyping of the T and B lymphocytes and analysis of the circulating dendritic cells (DCs). In patients with an infectious phenotype, a significant reduction in CD3+ and CD4+ cells and an expansion of CD8 naïve cells was evidenced. On the other hand, the immunophenotype of the patients with immune dysregulation showed a skewing toward memory T cell populations, and reduced levels of recent thymic emigrants (RTEs), while the highest levels of RTEs were detected in the patients with isolated extra-immunological manifestations. This study integrates the current literature, contributing to elucidating the variability in the immune status of patients with 22q11.2DS with different phenotypic expressions, particularly in those with infectious phenotype and immune dysregulation.
Project description:22q11.2 deletion syndrome (22qDS) is a genetic syndrome associated with a chromosome 22q11.2 deletion and variable phenotypic expression that commonly includes schizophrenia. Approximately 1% of patients with schizophrenia have 22qDS. The schizophrenia in 22qDS appears broadly similar to that found in the general population with respect to core signs and symptoms, treatment response, neurocognitive profile, and MRI brain anomalies. However, individuals with a 22qDS form of schizophrenia typically have distinguishable physical features, have a lower IQ, and may differ in auxiliary clinical features. IQ, length of 22q11.2 deletions, and COMT functional allele do not appear to be major risk factors for schizophrenia in 22qDS. Ascertainment biases and small sample sizes are limitations of most studies. Larger studies over the lifespan and continuing education about this underrecognized condition are needed. 22qDS-schizophrenia is an important genetic subtype and a valuable model of neurodevelopmental mechanisms involved in the pathogenesis of schizophrenia.
Project description:BackgroundThe 22q11.2 deletion syndrome is a variably expressed disorder that can include cardiac, palate, and other physical abnormalities, immunodeficiency, and hypocalcemia. Because of the extreme variability in phenotype, there has been no available estimate of the total medical expenditure associated with the average case.MethodsWe have developed a model to estimate the cost from the time of diagnosis to age 20. Costs were based on patients seen at a specialty center but also considered those components of care expected to have been provided by external healthcare facilities. Expense was based on billed medical charges extracted from the electronic medical billing system for all patients with a diagnosis of DiGeorge or velocardiofacial syndrome from 1993-2015. Expenditures included maternal prenatal care directly related to an affected pregnancy, molecular/cytogenetic diagnosis, consultations, surgery, and/or other treatment and management. Most mental health services (except inpatient), therapy related to cognitive, behavioral, speech, pharmacy, and nonmedical costs (special education, vocational, respite, lost earnings) were not included.ResultsData were available for 642 patients with 50.7% diagnosed prenatally or in the first year of life. The average cost for a patient was $727,178. Costs were highest for patients ascertained prenatally ($2,599,955) or in the first year of life ($1,043,096), those with cardiac abnormalities or referred for cardiac evaluation ($751,535), and patients with low T-cell counts ($1,382,222).ConclusionThis study demonstrates that there are significant medical costs associated with 22q11.2 deletion syndrome.
Project description:Velo-cardio-facial syndrome/DiGeorge syndrome, also known as 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome, with an estimated incidence of 1/2,000-1/4,000 live births. Approximately 9-11% of patients with this disorder have an overt cleft palate (CP), but the genetic factors responsible for CP in the 22q11DS subset are unknown. The TBX1 gene, a member of the T-box transcription factor gene family, lies within the 22q11.2 region that is hemizygous in patients with 22q11DS. Inactivation of one allele of Tbx1 in the mouse does not result in CP, but inactivation of both alleles does. Based on these data, we hypothesized that DNA variants in the remaining allele of TBX1 may confer risk to CP in patients with 22q11DS. To test the hypothesis, we evaluated TBX1 exon sequencing (n = 360) and genotyping data (n = 737) with respect to presence (n = 54) or absence (n = 683) of CP in patients with 22q11DS. Two upstream SNPs (rs4819835 and rs5748410) showed individual evidence for association but they were not significant after correction for multiple testing. Associations were not identified between DNA variants and haplotypes in 22q11DS patients with CP. Overall, this study indicates that common DNA variants in TBX1 may be nominally causative for CP in patients with 22q11DS. This raises the possibility that genes elsewhere on the remaining allele of 22q11.2 or in the genome could be relevant.
Project description:Haploinsufficiency of TBX1, encoding a T-box transcription factor, is largely responsible for the physical malformations in velo-cardio-facial /DiGeorge/22q11.2 deletion syndrome (22q11DS) patients. Cardiovascular malformations in these patients are highly variable, raising the question as to whether DNA variations in the TBX1 locus on the remaining allele of 22q11.2 could be responsible. To test this, a large sample size is needed. The TBX1 gene was sequenced in 360 consecutive 22q11DS patients. Rare and common variations were identified. We did not detect enrichment in rare SNP (single nucleotide polymorphism) number in those with or without a congenital heart defect. One exception was that there was increased number of very rare SNPs between those with normal heart anatomy compared to those with right-sided aortic arch or persistent truncus arteriosus, suggesting potentially protective roles in the SNPs for these phenotype-enrichment groups. Nine common SNPs (minor allele frequency, MAF > 0.05) were chosen and used to genotype the entire cohort of 1,022 22q11DS subjects. We did not find a correlation between common SNPs or haplotypes and cardiovascular phenotype. This work demonstrates that common DNA variations in TBX1 do not explain variable cardiovascular expression in 22q11DS patients, implicating existence of modifiers in other genes on 22q11.2 or elsewhere in the genome.