Project description:IntroductionThe epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor osimertinib was recently approved for resected EGFR-mutant stages IB-IIIA non-small cell lung cancer due to improved disease-free survival (DFS) in this population compared with placebo. This study aimed to evaluate the cost-effectiveness (CE) of this strategy.Materials and methodsWe constructed a Markov model using post-resection health state transitions with digitized DFS data from the ADAURA trial to compare cost and quality-adjusted life years (QALYs) of 3 years of adjuvant osimertinib versus placebo over a 10-year time horizon. An overall survival (OS) benefit of 5% was assumed. Costs and utility values were derived from Medicare reimbursement data and literature. A CE threshold of 3 times the gross domestic product per capita was used. Sensitivity analyses were performed.ResultsThe incremental cost-effectiveness ratio for adjuvant osimertinib was $317 119 per QALY-gained versus placebo. Initial costs of osimertinib are higher in years 1-3. Costs due to progressive disease (PD) are higher in the placebo group through the first 6.5 years. Average pre-PD, post-PD, and total costs were $2388, $379 047, and $502 937, respectively, in the placebo group, and $505 775, $255 638, and $800 697, respectively, in the osimertinib group. Sensitivity analysis of OS gains reaches CE with an hazard ratio (HR) of 0.70-0.75 benefit of osimertinib over placebo. A 50% discount to osimertinib drug cost yielded an ICER of $115 419.ConclusionsThree-years of adjuvant osimertinib is CE if one is willing to pay $317 119 more per QALY-gained. Considerable OS benefit over placebo or other economic interventions will be needed to reach CE.
Project description:IntroductionFirst-line osimertinib plus chemotherapy significantly prolonged progression-free survival of patients with EGFR-mutated advanced non-small cell lung cancer (NSCLC) compared to osimertinib, according to the FLAURA2 trial.MethodsWe established a Markov model to compare the cost-effectiveness of osimertinib plus chemotherapy with that of osimertinib alone. Clinical data were obtained from the FLAURA and FLAURA2 trials, and additional data were extracted from online resources and publications. Sensitivity analyses were conducted to evaluate the robustness of the findings. We used A willingness-to-pay threshold of $150,000 per quality-adjusted life-years (QALYs) gained. The main outcomes were QALYs, overall costs, incremental cost-effectiveness ratio (ICER), incremental net monetary benefit, and incremental net health benefit. Subgroup analyses were conducted according to patients' mutation type and central nervous system (CNS) metastatic status.ResultsIn a 20-year time horizon, the ICER of osimertinib plus chemotherapy versus osimertinib alone was $223,727.1 per QALY gained. The sensitivity analyses identified the cost of osimertinib and the hazard ratio for overall survival as the top 2 influential factors and a 1.9% probability of osimertinib plus chemotherapy to be cost-effective. The subgroup analyses revealed ICERs of $132,614.1, $224,449.8, $201,464.1, and $130,159.7 per QALY gained for L858R mutations, exon 19 deletions, CNS metastases, and no CNS metastases subgroups, respectively.ConclusionsFrom the perspective of the United States health care system, osimertinib plus chemotherapy is not cost-effective compared to osimertinib alone for treatment-naïve patients with EGFR-mutated advanced NSCLC, but more favorable cost-effectiveness occurs in patients with L858R mutations and patients without baseline CNS metastases.
Project description:BackgroundFor many patients with resected epidermal growth factor receptor mutation-positive (EGFRm) non-small cell lung cancer (NSCLC), current standard of care (SoC) is adjuvant chemotherapy; however, disease recurrence remains high. Based on positive results from ADAURA (NCT02511106), adjuvant osimertinib was approved for treatment of resected stage IB‒IIIA EGFRm NSCLC.ObjectiveThe aim was to assess the cost-effectiveness of adjuvant osimertinib in patients with resected EGFRm NSCLC.MethodsA five-health-state, state-transition model with time dependency was developed to estimate lifetime (38 years) costs and survival of resected EGFRm patients treated with adjuvant osimertinib or placebo (active surveillance), with/without prior adjuvant chemotherapy, using a Canadian Public Healthcare perspective. Transitions between health states were modeled using ADAURA and FLAURA (NCT02296125) data, Canadian life tables, and real-world data (CancerLinQ Discovery®). The model used a 'cure' assumption: patients remaining disease free for 5 years after treatment completion for resectable disease were deemed 'cured.' Health state utility values and healthcare resource usage estimates were derived from Canadian real-world evidence.ResultsIn the reference case, adjuvant osimertinib treatment led to a mean 3.20 additional quality-adjusted life-years (QALYs; (11.77 vs 8.57) per patient, versus active surveillance. The modeled median percentage of patients alive at 10 years was 62.5% versus 39.3%, respectively. Osimertinib was associated with mean added costs of Canadian dollars (C$)114,513 per patient and a cost/QALY (incremental cost-effectiveness ratio) of C$35,811 versus active surveillance. Model robustness was demonstrated by scenario analyses.ConclusionsIn this cost-effectiveness assessment, adjuvant osimertinib was cost-effective compared with active surveillance for patients with completely resected stage IB‒IIIA EGFRm NSCLC after SoC.
Project description:ImportanceThe survival of patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) gene mutations has improved substantially in the last decade with the development of targeted tyrosine kinase inhibitors (TKIs). Osimertinib, a third-generation TKI that is approved by the US Food and Drug Administration for the treatment of patients who develop EGFR T790M mutations, has recently shown improved clinical outcomes compared with gefitinib and erlotinib for treatment-naive patients.ObjectiveThe aim of this study was to assess the cost-effectiveness of osimertinib for the first-line treatment of patients with EGFR-mutated NSCLC.Design, setting, and participantsFor this cost-effectiveness analysis, we extracted individual patient data from the FLAURA randomized clinical trial and used findings of our earlier meta-analysis to develop a decision-analytic model and determine the cost-effectiveness of osimertinib (AZD9291) compared with first- and second-generation EGFR-TKIs over a 10-year time horizon. All direct costs were based on US and Brazilian payer perspectives.Main outcomes and measuresThe main outcome of this study was the incremental cost-effectiveness ratio (ICER) expressed as cost per quality-adjusted life-year (QALY) gained by using osimertinib compared with first- or second-generation EGFR-TKIs in previously untreated EGFR-mutated NSCLC.ResultsIn the base case using the data as reported in the FLAURA trial, the incremental QALY for osimertinib was 0.594 compared with the first- and second-generation EGFR-TKIs. In the United States, the osimertinib ICERs were $226 527 vs erlotinib, $231 123 vs gefitinib, and $219 874 vs afatinib. In Brazil, the ICERs were $162 329, $180 804, and $175 432, respectively. The overall survival (95% CI) reported in the FLAURA trial (hazard ratio, 0.63; 95% CI, 0.45-0.88) had the strongest association with the ICER (ranging from $84 342 to $859 771). Osimertinib price adjustments to the FLAURA trial data improved cost-effectiveness. For example, a discount of 10% on osimertinib acquisition cost was associated with a 20% decreased ICER compared with the base case ICER, and a discount of 20% on osimertinib acquisition cost was associated with a 40% decreased ICER compared with the base case ICER.Conclusions and relevanceAt current costs, by World Health Organization cost-effectiveness threshold criteria, osimertinib is not cost-effective for first-line therapy of EGFR-mutated NSCLC in either the United States or Brazil.
Project description:Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR-independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS-mitogen-activated protein kinase (MAPK) or RAS-phosphatidylinositol 3-kinase (PI3K) pathways, novel fusion events and histological/phenotypic transformation, as well as discussing the current evidence regarding potential new approaches to counteract osimertinib resistance.
Project description:PurposeThe phase III ADAURA (ClinicalTrials.gov identifier: NCT02511106) primary analysis demonstrated a clinically significant disease-free survival (DFS) benefit with adjuvant osimertinib versus placebo in EGFR-mutated stage IB-IIIA non-small-cell lung cancer (NSCLC) after complete tumor resection (DFS hazard ratio [HR], 0.20 [99.12% CI, 0.14 to 0.30]; P < .001). We report an updated exploratory analysis of final DFS data.MethodsOverall, 682 patients with stage IB-IIIA (American Joint Committee on Cancer/Union for International Cancer Control, seventh edition) EGFR-mutated (exon 19 deletion/L858R) NSCLC were randomly assigned 1:1 (stratified by stage, mutational status, and race) to receive osimertinib 80 mg once-daily or placebo for 3 years. The primary end point was DFS by investigator assessment in stage II-IIIA disease analyzed by stratified log-rank test; following early reporting of statistical significance in DFS, no further formal statistical testing was planned. Secondary end points included DFS in stage IB-IIIA, overall survival, and safety. Patterns of recurrence and CNS DFS were prespecified exploratory end points.ResultsAt data cutoff (April 11, 2022), in stage II-IIIA disease, median follow-up was 44.2 months (osimertinib) and 19.6 months (placebo); the DFS HR was 0.23 (95% CI, 0.18 to 0.30); 4-year DFS rate was 70% (osimertinib) and 29% (placebo). In the overall population, DFS HR was 0.27 (95% CI, 0.21 to 0.34); 4-year DFS rate was 73% (osimertinib) and 38% (placebo). Fewer patients treated with osimertinib had local/regional and distant recurrence versus placebo. CNS DFS HR in stage II-IIIA was 0.24 (95% CI, 0.14 to 0.42). The long-term safety profile of osimertinib was consistent with the primary analysis.ConclusionThese updated data demonstrate prolonged DFS benefit over placebo, reduced risk of local and distant recurrence, improved CNS DFS, and a consistent safety profile, supporting the efficacy of adjuvant osimertinib in resected EGFR-mutated NSCLC.
Project description:Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the preferential options for advanced non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. Osimertinib is a potent irreversible third-generation EGFR-TKI targeting EGFR mutations but has little effect on wild-type EGFR. In view of its remarkable efficacy and manageable safety, osimertinib was recommended as the standard first-line treatment for advanced or metastatic NSCLC patients with EGFR mutations. However, as the other EGFR-TKIs, osimertinib will inevitably develop acquired resistance, which limits its efficacy on the treatment of EGFR-mutated NSCLC patients. The etiology of triggering osimertinib resistance is complex including EGFR-dependent and EGFR-independent pathways, and different therapeutic strategies for the NSCLC patients with osimertinib resistance have been developed. Herein, we comprehensively summarized the resistance mechanisms of osimertinib and discuss in detail the potential therapeutic strategies for EGFR-mutated NSCLC patients suffering osimertinib resistance for the sake of the improvement of survival and further achievement of precise medicine.
Project description:Tyrosine kinase inhibitors (TKI) targeting the epidermal growth factor receptor (EGFR) have significantly prolonged survival in EGFR-mutant non-small cell lung cancer patients. However, the development of resistance mechanisms prohibits the curative potential of EGFR TKIs. Combination therapies emerge as a valuable approach to preventing or delaying disease progression. Here, we investigated the combined inhibition of polo-like kinase 1 (PLK1) and EGFR in TKI-sensitive EGFR-mutant NSCLC cells. The pharmacological inhibition of PLK1 destabilized EGFR levels and sensitized NSCLC cells to Osimertinib through induction of apoptosis. In addition, we found that c-Cbl, a ubiquitin ligase of EGFR, is a direct phosphorylation target of PLK1 and PLK1 impacts the stability of c-Cbl in a kinase-dependent manner. In conclusion, we describe a novel interaction between mutant EGFR and PLK1 that may be exploited in the clinic. Co-targeting PLK1 and EGFR may improve and prolong the clinical response to EGFR TKI in patients with an EGFR-mutated NSCLC.