Project description:Developing a cheap, stable and effective photocatalyst is necessary for remediation of persistent organic pollutants. To address this challenge, we proposed a unique interfacial engineering technique and proper bandgap matching strategy to synthesize MWCNTs/ZnO/Chitosan ternary nanocomposite for effective photocatalytic application. The features of the prepared samples were determined by FESEM, TEM, EDX, elemental mapping, AFM, FT-IR, XRD, UV-Vis spectroscopy and BET surface analysis. The obtained results showed successful fabrication of synthesized nanocomposites with enhanced surface area. Degradation effect of nanostructures on methylene blue (MB) and antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis) pathogenic strains were investigated. The proposed photocatalytic mechanism illustrated the electron transfer facilitated by MWCNTs/ZnO/Chitosan structure which results in spatial separation of electron-hole pairs. Compared with ZnO and ZnO/Chitosan, the prepared MWCNTs/ZnO/Chitosan ternary nanocomposite showed high usage of UV illumination and superior separation of photogenerated electron-hole pairs. MWCNTs/ZnO/Chitosan illustrated 86.26% adsorption rate and outstanding increased photocatalytic activity on MB degradation efficiency of 98.76% after 20 min. Stability of photocatalyst reached from 98.76% initial decolorization to 85% at the fourth cycle. In addition, the ternary nanocomposite also exhibited remarkable bactericidal activity against gram-positive (S. aureus) and (B. subtilis) and gram-negative (E. coli) bacteria strains. Due to the obtained results, the prepared nanocomposite would be an efficient candidate photocatalyst with antibacterial properties.
Project description:A novel ZnO-GO/CGH composite was prepared using an in situ synthesis process for photodegradation of methylene blue under visible light illumination. The chitin-graphene composite hydrogel (CGH) was used to provide uniform binding of the nano ZnO-GO composite to the hydrogel surface and prevent their agglomeration. GO provides multi-dimensional protons and electron transport channels for ZnO with a flower-like structure, which possessed improved photo-catalytic activity. SEM analysis indicates that the hydrogel has good adsorption properties with rougher surfaces and porous microstructure, which enables it to adsorb the dyes effectively. Under synergetic enhancement of adsorption and photo-catalysis, catalytic activity and nano ZnO-GO/CGH recycling improved greatly. Synthesized nano ZnO-GO/CGH showed high dye removal efficiency of 99%, about 2.2 times that of the pure chitin gel under the same condition. This suggests the potential application of the new photocatalytic composites to remove organic dyes from wastewater.
Project description:In this work, a diatomite@graphene@ZnO (ZGD) photocatalyst was synthesized by chemical vapor deposition and hydrothermal methods and used for the photocatalytic degradation of methylene blue. The characterization of the prepared nanocomposite was performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and N2 adsorption-desorption techniques. Ultraviolet-visible diffuse reflectance spectroscopy (DRS) showed that the prepared ZGD photocatalyst enhanced the absorption of visible light and induced a red-shift. Photoluminescence spectroscopy (PL) revealed that the recombination of electron and hole pairs can be effectively suppressed. Besides, the synergistic effect of diatomite and graphene avoids the agglomeration of ZnO, increases the number of surface adsorption sites, and limits the electron transport, consequently improving the photocatalytic activity of ZnO. When ZGD-3 was UV-irradiated (λ = 663 nm) for 90 minutes, the degradation effectiveness of methylene blue (MB) was 100%. After the fifth repetition, the photocatalytic degradation efficiency was always greater than 95%. Simply put, the ZGD nanocatalyst can be used as an efficient photocatalyst for dye wastewater treatment.
Project description:TiO2-containing photocatalysts, which combine TiO2 with carbon-based materials, are promising materials for wastewater treatment due to synergistic photodegradation and adsorption phenomena. In this work, TiO2/AC composites were produced by the in situ immobilization of TiO2 nanoparticles over activated carbon (AC) derived from spent coffee grains, using different TiO2/AC proportions. The TiO2/AC composites were tested as adsorbents (dark) and as photocatalysts in a combined adsorption+photocatalytic process (solar irradiation) for methylene blue (MB) removal from ultrapure water, and from a secondary effluent (SecEf) of an urban wastewater treatment plant. All the materials were characterized by XRD (X-ray powder diffraction), N2 adsorption-desorption isotherms at -196 °C, SEM (scanning electron microscopy), UV-Vis diffuse reflectance, FTIR (Fourier-transform infrared spectroscopy), TPD (temperature programmed desorption), XPS (X-ray photoelectron spectroscopy) and TGA (thermogravimetric analysis). The TiAC60 (60% C) composite presented the lowest band gap (1.84 eV), while, for TiAC29 (29% C), the value was close to that of bare TiO2 (3.18 vs. 3.17 eV). Regardless of the material, the solar irradiation improved the percentage of MB discolouration when compared to adsorption in dark conditions. In the case of simultaneous adsorption+photocatalytic assays performed in ultrapure water, TiAC29 presented the fastest MB removal. Nevertheless, both TiAC29 and TiAC60 led to excellent MB removal percentages (96.1-98.1%). UV-induced photoregeneration was a promising strategy to recover the adsorption capacity of the materials, especially for TiAC60 and AC (>95%). When the assays were performed in SecEf, all the materials promoted discolouration percentages close to those obtained in ultrapure water. The bulk water parameters revealed that TiAC60 allowed the removal of a higher amount of MB, associated with the overall improvement of the SecEf quality.
Project description:Industrial chemical pollutants such as methylene blue (MB) dye are released into the water body and potentially cause harm to the human and aquatic biosphere. Therefore, this study aims to synthesize eco-friendly nanocatalysts, i.e., reduced graphene oxide (rGO), zinc oxide (ZnO), and reduced graphene oxide-zinc oxide (rGO@ZnO) nanocomposites, for efficient photocatalytic degradation of MB dye. A graphite rod was obtained from waste dry cell batteries for the electrochemical exfoliation synthesis of graphene oxide (GO) and rGO. For the eco-friendly synthesis of ZnO and rGO@ZnO nanocatalysts, Croton macrostachyus leaf extract was used as a reducing and capping agent. The synthesized nanocatalysts were characterized using a UV-Vis spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy with energy-dispersive X-ray. The eco-friendly synthesized rGO, ZnO, and rGO@ZnO nanocatalysts were applied for the photocatalytic degradation of MB dye using direct sunlight irradiation. At optimum parameters, photocatalytic degradation of MB dye efficiency reached up to 66%, 96.5%, and 99.0%, respectively. Furthermore, kinetics of the photodegradation reaction based on rGO, ZnO, and rGO@ZnO nanocatalysts follow pseudo-first-order with a rate constant of 2.16 × 10-3 min-1, 4.97 × 10-3 min-1, and 5.03 × 10-3 min-1, respectively. Lastly, this study promotes a low catalyst load (20 mg) for the efficient photodegradation of MB dye.
Project description:The ZnO-based ternary heterostructure ZnO/Eu2O3/NiO nanoparticles are synthesized using waste curd as fuel by a simple one-pot combustion method. The as-synthesized heterostructure is characterized by using various spectroscopic and microscopic techniques including X-ray diffraction, UV-vis, FTIR, SEM, and TEM analyses. The photocatalytic activity of the ternary nanocomposite was tested for the photodegradation of methylene blue (MB) under solar light irradiation. The results have revealed that the ternary ZnO/Eu2O3/NiO photocatalyst exhibits excellent performance toward the photocatalytic degradation of the studied dye. Optimization studies revealed that the synthesized heterostructure exhibited a pH-dependent photocatalytic activity, and better results are obtained for specific concentrations of dye and catalysts. Among the different light sources employed during the study, the catalyst was found to possess the best degradation efficiency in visible light.
Project description:ZnO and Ti-doped ZnO (Ti-ZnO) nanoparticles were synthesized using rapid combustion. The morphology of ZnO and Ti-ZnO featured nanoparticles within cluster-like structures. The ZnO and Ti-ZnO structures exhibited similar hexagonal wurtzite structures and crystal sizes. This behavior occurred because Zn2+ sites of the ZnO lattice were substituted by Ti4+ ions. The chemical structure characterization implied the major vibration of the ZnO structure. The physisorption analysis showed similar mesoporous and non-rigid aggregation structures for ZnO and Ti-ZnO using N2 adsorption-desorption. However, Ti-ZnO demonstrated a specific surface area two times higher than that of ZnO. This was a major factor in improving the photocatalytic degradation of methylene blue (MB). The photocatalytic degradation analysis showed a kinetic degradation rate constant of 2.54 × 10-3 min-1 for Ti-ZnO, which was almost 80% higher than that of ZnO (1.40 × 10-3 min-1). The transformation mechanism of MB molecules into other products, including carbon dioxide, aldehyde, and sulfate ions, was also examined.
Project description:Using high-dielectric inorganic ceramics as fillers can effectively increase the dielectric constant of polymer-based composites. However, a high percentage of fillers will inevitably lead to a decrease in the mechanical toughness of the composite materials. By introducing high aspect ratio copper calcium titanate (CaCu3Ti4O12) nanowires (CCTO NWs) and graphene as fillers, the ternary poly(vinylidene fluoride) (PVDF)-based composites (CCTO NWs-graphene)/PVDF with a significant one-dimensional orientation structure were prepared by hot stretching. CCTO NWs and graphene are arranged in a directional manner to form a large number of microcapacitor structures, which significantly improves the dielectric constant of the composites. When the ratio of CCTO NWs and graphene is 0.2 and 0.02, the oriented composites have the highest dielectric constant, which is 19.3% higher than the random composites, respectively. Numerical simulations reveal that the introduction of graphene and the construction of the one-dimensional oriented microstructure have a positive effect on improving the dielectric properties of the composites. This study provides a strategy to improve the dielectric properties of composite materials by structural design without changing the filler content, which has broad application prospects in the field of electronic devices.
Project description:Photocatalytic technology aiming to eliminate organic pollutants in water has been rapidly developed. In this work, we successfully synthesized CuWO4/ZnO photocatalysts with different weight ratios of CuWO4 through facile hydrothermal treatment. Crystal structures, forms, and optical properties of these as-prepared materials were investigated and analyzed. 3% CuWO4/ZnO showed the optimum photodegradation efficiency toward methylene blue under the irradiation of simulated sunlight for 120 min, the degradation rate of which was 98.9%. The pseudo-first-order rate constant of 3% CuWO4/ZnO was ∼11.3 and ∼3.5 times bigger than that of pristine CuWO4 and ZnO, respectively. Furthermore, the material exhibited high stability and reusability after five consecutive photocatalytic tests. In addition, free radical capture experiments were conducted and the possible mechanism proposed explained that the synergistic effect between CuWO4 and ZnO accelerates the photodegradation reaction. This work provides a feasible technical background for the efficient and sustainable utilization of photocatalysts in wastewater control.