Unknown

Dataset Information

0

Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence.


ABSTRACT: Histone lysine crotonylation (Kcr), as a posttranslational modification, is widespread as acetylation (Kac); however, its roles are largely unknown in kidney fibrosis. In this study, we report that histone Kcr of tubular epithelial cells is abnormally elevated in fibrotic kidneys. By screening these crotonylated/acetylated factors, a crotonyl-CoA-producing enzyme ACSS2 (acyl-CoA synthetase short chain family member 2) is found to remarkably increase histone 3 lysine 9 crotonylation (H3K9cr) level without influencing H3K9ac in kidneys and tubular epithelial cells. The integrated analysis of ChIP-seq and RNA-seq of fibrotic kidneys reveal that the hub proinflammatory cytokine IL-1β, which is regulated by H3K9cr, play crucial roles in fibrogenesis. Furthermore, genetic and pharmacologic inhibition of ACSS2 both suppress H3K9cr-mediated IL-1β expression, which thereby alleviate IL-1β-dependent macrophage activation and tubular cell senescence to delay renal fibrosis. Collectively, our findings uncover that H3K9cr exerts a critical, previously unrecognized role in kidney fibrosis, where ACSS2 represents an attractive drug target to slow fibrotic kidney disease progression.

SUBMITTER: Li L 

PROVIDER: S-EPMC11016098 | biostudies-literature | 2024 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence.

Li Lingzhi L   Xiang Ting T   Guo Jingjing J   Guo Fan F   Wu Yiting Y   Feng Han H   Liu Jing J   Tao Sibei S   Fu Ping P   Ma Liang L  

Nature communications 20240413 1


Histone lysine crotonylation (Kcr), as a posttranslational modification, is widespread as acetylation (Kac); however, its roles are largely unknown in kidney fibrosis. In this study, we report that histone Kcr of tubular epithelial cells is abnormally elevated in fibrotic kidneys. By screening these crotonylated/acetylated factors, a crotonyl-CoA-producing enzyme ACSS2 (acyl-CoA synthetase short chain family member 2) is found to remarkably increase histone 3 lysine 9 crotonylation (H3K9cr) leve  ...[more]

Similar Datasets

2024-02-08 | GSE245390 | GEO
2024-02-08 | GSE253032 | GEO
| PRJNA1028116 | ENA
| PRJNA1063680 | ENA
| S-EPMC5824862 | biostudies-literature
| S-EPMC6447453 | biostudies-literature
| S-EPMC7733482 | biostudies-literature
| S-EPMC9275897 | biostudies-literature
| S-EPMC6675591 | biostudies-literature
| S-EPMC8151056 | biostudies-literature