Project description:Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.
Project description:Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Clinical management has improved the prognosis of early HCC, but that of advanced HCC remains poor. Sorafenib, an oral multikinase inhibitor, provided a treatment option for advanced-stage HCC, and prolonged the survival and inhibited tumor progression as first-line therapy in patients with advanced HCC. In this study, we investigated if specific microRNAs could act as predictive biomarkers of sorafenib effectiveness and indicate the best time to switch to second-line therapies. Sorafenib inhibited the proliferation of the Li-7, Hep3B, HepG2 and Huh7 liver cancer cell lines (effective group), but not that of the HLE, HLF and ALEX cancer cell lines (non-effective group). A microRNA (miRNA/miR) analysis was performed comparing sorafenib-effective and non-effective cells lines as well as serum samples from patients with HCC from sorafenib-effective (complete response/partial response) and -non-effective (progressive disease) groups before sorafenib administration and detected three differentially-expressed miRNAs that were common among the in vivo and in vitro samples. The increase rate (effective/non-effective) of hsa-miR-30d in the medium was higher than that in the cancer cells. hsa-miR-30d was highly expressed in the serum and exosomes of patients with HCC in the effective group when compared to those of the non-effective group. Additionally, the hsa-miR-30d expression in the medium of cancer cell lines was highly upregulated in the effective group compared with the non-effective group. These results suggested that hsa-miR-30d might be secreted by the cancer cells to the serum through the exosomes. We identified a specific circulating miRNA that is related to refractory HCC under sorafenib therapy. Therefore, hsa-miR-30d might serve as a predictive biomarker for the efficacy of sorafenib therapy in HCC.
Project description:BackgroundIn the Strategies for Management of Anti-Retroviral Therapy trial, all-cause mortality was higher for participants randomized to intermittent, CD4-guided antiretroviral treatment (ART) (drug conservation [DC]) than continuous ART (viral suppression [VS]).We hypothesized that increased HIV-RNA levels following ART interruption induced activation of tissue factor pathways, thrombosis, and fibrinolysis.Methods and findingsStored samples were used to measure six biomarkers: high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), amyloid A, amyloid P, D-dimer, and prothrombin fragment 1+2. Two studies were conducted: (1) a nested case-control study for studying biomarker associations with mortality, and (2) a study to compare DC and VS participants for biomarker changes. For (1), markers were determined at study entry and before death (latest level) for 85 deaths and for two controls (n = 170) matched on country, age, sex, and date of randomization. Odds ratios (ORs) were estimated with logistic regression. For each biomarker, each of the three upper quartiles was compared to the lowest quartile. For (2), the biomarkers were assessed for 249 DC and 250 VS participants at study entry and 1 mo following randomization. Higher levels of hsCRP, IL-6, and D-dimer at study entry were significantly associated with an increased risk of all-cause mortality. Unadjusted ORs (highest versus lowest quartile) were 2.0 (95% confidence interval [CI], 1.0-4.1; p = 0.05), 8.3 (95% CI, 3.3-20.8; p < 0.0001), and 12.4 (95% CI, 4.2-37.0; p < 0.0001), respectively. Associations were significant after adjustment, when the DC and VS groups were analyzed separately, and when latest levels were assessed. IL-6 and D-dimer increased at 1 mo by 30% and 16% in the DC group and by 0% and 5% in the VS group (p < 0.0001 for treatment difference for both biomarkers); increases in the DC group were related to HIV-RNA levels at 1 mo (p < 0.0001). In an expanded case-control analysis (four controls per case), the OR (DC/VS) for mortality was reduced from 1.8 (95% CI, 1.1-3.1; p = 0.02) to 1.5 (95% CI, 0.8-2.8) and 1.4 (95% CI, 0.8-2.5) after adjustment for latest levels of IL-6 and D-dimer, respectively.ConclusionsIL-6 and D-dimer were strongly related to all-cause mortality. Interrupting ART may further increase the risk of death by raising IL-6 and D-dimer levels. Therapies that reduce the inflammatory response to HIV and decrease IL-6 and D-dimer levels may warrant investigation.
Project description:Coagulation factor XIII (FXIII) circulates in plasma as a pro-transglutaminase heterotetrameric complex (FXIIIA2B2), which upon activation by thrombin and calcium covalently crosslinks preformed fibrin polymers. The heterotetrameric complex is composed of a catalytic FXIIIA2 subunit and a protective/regulatory FXIII-B2 subunit coded by F13A1 and F13B genes, respectively. The catalytic FXIIIA2 subunit is encoded by the F13A1 gene, expressed primarily in cells of mesenchymal origin, whereas the FXIIIB subunit encoded by the F13B gene is expressed and secreted from hepatocytes. The plasma FXIIIA2 subunit, which earlier was believed to be secreted from cells of megakaryocytic lineage, is now understood to result primarily from resident macrophages. The regulation of the FXIII subunits at the genetic level is still poorly understood. The current study adopts a purely bioinformatic approach to analyze the temporal, time-specific expression array-data corresponding to both the subunits in specific cell lineages, with respect to the gene promoters. We analyze the differentially expressed genes correlated with F13A1 and F13B expression levels in an array of cell types, utilizing publicly available microarray data. We attempt to understand the regulatory mechanism underlying the variable expression of FXIIIA2 subunit in macrophages (M0, M1, M2 and aortic resident macrophages). Similarly, the FXIIIB2 subunit expression data from adult, fetal hepatocytes and embryonic stem cells derived hepatoblasts (hESC-hepatoblast) was analyzed. The results suggest regulatory dependence between the two FXIII subunits at the transcript level. Our analysis also predicts the involvement of the FXIIIA2 subunit in macrophage polarization, plaque stability, and inflammation.
Project description:Since December 2019, a pandemic caused by a new coronavirus has spread to more than 170 countries around the world. Worsening infected patients requiring intensive care unit (ICU) admission associated with 30% of mortality. A part of worsening is induced by hemostasis deregulation. The aim of this study was to investigate the association of coagulation activation in COVID-19 progression. Thirty-five of the 99 patients got clinically worse. The final model of the logistic regression analysis revealed that O2 requirement (RR = 7.27 [1.50-19.31]), monocytes below 0.2G/L (RR = 2.88 [1.67-3.19]), fibrinogen levels (RR = 1.45 [1.17-1.82] per g/L increase), prothrombin fragments 1+2 higher than 290 pM (RR = 2.39 [1.20-3.30]), and thrombin peak (RR = 1.28 [1.03-1.59] per 50 nM increase) were associated with an increased risk of clinical worsening. A fibrinogen level threshold of 5.5 g/L, a thrombin peak measurement threshold of 99 pM, and O2 requirement associated with clinical outcome in more than 80% of our cohort. In conclusion, we identified fibrinogen and thrombin peak at admission as coagulation biomarkers associated with an increased risk of ICU admission or death. This finding allows initiating steroids and triage for worsening patients. Our results should therefore be considered as exploratory and deserve confirmation.
Project description:BackgroundHypercoagulability in lung cancer patients is associated with a high incidence of mortality and morbidity in the world. Therefore, this meta-analysis aimed to explore the correlation of the basic coagulation abnormalities in lung cancer patients compared with the control.MethodPubMed, Scopus, and other sources were employed to identify eligible studies. The outcome variable was expressed using mean ± standard deviation (SD). Heterogeneity among studies and publication bias were evaluated. The quality of included studies was also assessed based on Newcastle-Ottawa Scale checklist.ResultFinally, through a total of eight studies, prolonged prothrombin time (PT; standard mean difference [SMD]: 1.29; 95% CI: 0.47-2.11), plasma D-dimer value (SMD 3.10; 95% CI 2.08-4.12), fibrinogen (SMD 2.18; 95% CI:1.30-3.06), and platelet (PLT) count (SMD 1.00; 95% CI 0.84-1.16) were significantly higher in lung cancer patients when compared with the control group. The single-arm meta-analysis also showed that compared with control, lung cancer patients had high pooled PT 13.7 (95% CI:12.2-15.58) versus 11.79 (95% CI = 10.56-13.02), high D-dimer 275.99 (95% CI:172.9-11735.9) versus 0.2 (95% CI:0.20-0.37), high plasma fibrinogen 5.50 (95% CI:4.21-6.79) versus 2.5 (95% CI:2.04-2.91), and high PLT count 342.3 (95% CI:236.1-448.5) versus 206.6 (95% CI:176.4-236.7).ConclusionIn conclusion, almost all the coagulation abnormalities were closely associated with lung cancer, and hence coagulation indexes provide an urgent clue for early diagnosis and timely management.
Project description:Soluble biomarkers of inflammation predict non-AIDS related morbidity and mortality among human immunodeficiency virus (HIV)-infected persons. Exploring associations between plasma biomarkers and cellular phenotypes may identify sources of excess inflammation.Plasma biomarkers (interleukin 6 [IL-6] level, D-dimer level, high-sensitivity C-reactive protein [hsCRP] level, soluble CD14 [sCD14] level, and soluble CD163 [sCD163] level) were measured from cryopreserved samples from the Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy (SUN Study). We performed immunophenotyping of peripheral blood mononuclear cells for markers of T-cell and monocyte activation, maturation, and migration. We evaluated associations between cellular phenotypes and soluble biomarkers by Spearman rank correlation and multivariate linear regression.Participants' (n = 670) median age was 41 years, 88% were prescribed antiretroviral therapy, 72% had a plasma HIV RNA load of <400 copies/mL, and the median CD4(+) T-lymphocyte count was 471 cells/µL. After adjustment, CD14(++)CD16(+) monocytes were associated with higher levels of IL-6, hsCRP, and sCD163; associations with IL-6 and hsCRP persisted in persons with suppressed HIV replication. While CCR5(+) monocytes positively associated with D-dimer levels, CCR2(+) monocytes were inversely associated with hsCRP levels.Plasma inflammatory biomarkers that predict morbidity and mortality were strongly associated with monocyte activation and migration, modestly associated with T-cell maturation, and not associated with CD8(+) T-cell activation phenotypes. These findings suggest that strategies to control monocyte activation warrant further investigation.
Project description:ObjectiveTo investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection.DesignA prospective cohort.MethodsHIV-infected patients on continuous antiretroviral therapy (ART) in the control arms of three randomized trials (N=5023) were included in an analysis of predictors of cancer (any type, infection-related or infection-unrelated). Hazard ratios for IL-6, CRP and D-dimer levels (log2-transformed) were calculated using Cox models stratified by trial and adjusted for demographics and CD4+ cell counts and adjusted also for all biomarkers simultaneously. To assess the possibility that biomarker levels were elevated at entry due to undiagnosed cancer, analyses were repeated excluding early cancer events (i.e. diagnosed during first 2 years of follow-up).ResultsDuring approximately 24,000 person-years of follow-up (PYFU), 172 patients developed cancer (70 infection-related; 102 infection-unrelated). The risk of developing cancer was associated with higher levels (per doubling) of IL-6 (hazard ratio 1.38, P<0.001), CRP (hazard ratio 1.16, P=0.001) and D-dimer (hazard ratio 1.17, P=0.03). However, only IL-6 (hazard ratio 1.29, P=0.003) remained associated with cancer risk when all biomarkers were considered simultaneously. Results for infection-related and infection-unrelated cancers were similar to results for any cancer. Hazard ratios excluding 69 early cancer events were 1.31 (P=0.007), 1.14 (P=0.02) and 1.07 (P=0.49) for IL-6, CRP and D-dimer, respectively.ConclusionActivated inflammation and coagulation pathways are associated with increased cancer risk during HIV infection. This association was stronger for IL-6 and persisted after excluding early cancer. Trials of interventions may be warranted to assess whether cancer risk can be reduced by lowering IL-6 levels in HIV-positive individuals.
Project description:Although the detection of predictive biomarkers is of particular importance for the development of accurate molecular diagnostics, conventional statistical analyses based on gene-by-treatment interaction tests lack sufficient statistical power for this purpose, especially in large-scale clinical genome-wide studies that require an adjustment for multiplicity of a huge number of tests. Here we demonstrate an alternative efficient multi-subgroup screening method using multidimensional hierarchical mixture models developed to overcome this issue, with application to stroke and breast cancer randomized clinical trials with genomic data. We show that estimated effect size distributions of single nucleotide polymorphisms (SNPs) associated with outcomes, which could provide clues for exploring predictive biomarkers, optimizing individualized treatments, and understanding biological mechanisms of diseases. Furthermore, using this method we detected three new SNPs that are associated with blood homocysteine levels, which are strongly associated with the risk of stroke. We also detected six new SNPs that are associated with progression-free survival in breast cancer patients.
Project description:BackgroundThymic malignancies represent a heterogeneous group of rare thoracic cancers, which are classified according to the World Health Organization histopathologic classification, that distinguishes thymomas from thymic carcinomas. Data regarding the biology of those tumors are limited in the literature, and the vast majority have been obtained using surgical specimens from early-stage disease. Meanwhile, treatment of advanced, refractory thymic tumors currently relies on chemotherapy, with limited efficacy. Comprehensive genomic profiling (CGP) of advanced, refractory tumors would open some opportunities for innovative treatments.Patients and methodsA total of 90 and 174 consecutive patients with thymoma or thymic carcinoma, respectively, for whom formalin-fixed, paraffin-embedded specimens from recurrent, refractory tumor were sequenced, were included. Sequencing was performed using hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of >500× for up to 315 cancer-related genes plus 37 introns from 28 genes frequently rearranged in cancer.ResultsThymomas featured a low frequency of genomic alterations (average of 1.8/tumor), and low levels of TMB. The genomic alterations identified in more than 10% of cases were in the CDKN2A/B and TP53 genes. Amplification in the NTRK1 gene was found in an unresectable, stage III, type B3 thymoma. Thymic carcinomas featured a significantly higher frequency of alterations at 4.0/tumor (P < .0001). Clinically relevant genomic alterations were observed in the CDKN2A, KIT, and PTEN/PI3K/MTOR pathways. Elevated TMB in thymic carcinomas was uncommon with only 6% of cases featuring ≥10 mutations/Mb.ConclusionsOur cohort is the largest available so far, reporting on CGP of thymic epithelial tumors in the setting of advanced disease. The identification of clinically relevant genomic alterations in the KIT, PI3K, CDKN2A/B, or NTRK genes provides a strong rationale for potential precision medicine approaches using targeted agents. A subset of thymic carcinomas show high tumor mutation burden, what may be a predictor of efficacy of immune checkpoint inhibitors.