Project description:Rational design and modification of the all-carbon fullerene cages to meliorate their nature of hydrophobicity is critical for biomedical applications. The outstanding electron affinity of fullerenes enables them to effectively eliminate reactive oxygen species (ROS), the excess of which may lead to health hazards or biological dysfunction. Herein reported is a facile, mild, and green approach to synthesizing the favorable water-soluble C60 nanoparticles capable of ROS-scavenging by combining the mussel-inspired chemistry with the Michael addition reaction. Various characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), transmission electron cryomicroscopy (Cryo-TEM), and dynamic laser scattering (DLS) were carried out to confirm the satisfactory preparation of the hybrid C60-PDA-GSH nanoparticles, which exhibited apparent scavenging capacity of DPPH and hydroxyl radicals in vitro. Additionally, the biocompatible C60-PDA-GSH nanoparticles entered into cells and displayed a universal cytoprotective effect against oxidative press induced by H2O2 in four kinds of human cells at a low concentration of 2 ?g/mL. The ease and versatility of the strategy present in this work will not only trigger more fullerene-based materials by the immobilization of diverse functional molecules, but will also extend their possible applications.
Project description:A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents.
Project description:In order to improve the antitumor activity and water solubility of 10-hydroxycamptothecin (HCPT), a series of novel HCPT conjugates were designed and synthesized by conjugating polyethylene glycol (PEG) to the 10-hydroxyl group of HCPT via a valine spacer. The in vitro stability of these synthesized compounds was determined in pH 7.4 buffer at 37 °C, and the results showed that they released HCPT at different rates. All the compounds demonstrated significant antitumor activity in vitro against K562, HepG2 and HT-29 cells. Among them, compounds, 4a, 4d, 4e and 4f, exhibited 2-5 times higher potency than HCPT. The stability and antitumor activity of these conjugates were found to be closely related to the length of PEG and the linker type, conjugates with a relatively short PEG chain and carbamate linkages (compounds 4a and 4f) exhibited controlled release of HCPT and excellent antitumor in vitro activity.
Project description:We have demonstrated that water-soluble zinc ionophores can be administered to mice at relatively high doses and inhibit the growth of A549 lung cancer cells grown in xenograft models. Gene expression profiles of tumor specimens harvested from mice four hours after treatment confirmed that the activation of stress responsive genes occurs in vivo. These findings lead us to propose that the pharmacologic delivery of zinc to tumors using water solubilized ionophores is a potential approach to cancer therapy. Keywords: Dose response
Project description:We have shown that water solubilized versions of a zinc ionophore increase intracellular concentrations of free zinc and have antiproliferative activity in exponential phase A549 lung cancer cultures. The gene expression profiles of A549 lung cancer cultures treated with the lead compound PCI-5002 reveal the activation of stress response pathways. Medium supplementation with zinc (25 μM) led to activation of additional oxidative stress response as well as apoptotic pathways. We propose that the pharmacologic delivery of zinc to tumors using water solubilized ionophores is a potential approach to cancer therapy. Keywords: Dose response
Project description:Excessive production of reactive oxygen species is the main cause of hepatocellular carcinoma (HCC) initiation and progression. Water-soluble pristine C60 fullerene is a powerful and non-toxic antioxidant, therefore, its effect under rat HCC model and its possible mechanisms were aimed to be discovered. Studies on HepG2 cells (human HCC) demonstrated C60 fullerene ability to inhibit cell growth (IC50 = 108.2 μmol), to induce apoptosis, to downregulate glucose-6-phosphate dehydrogenase, to upregulate vimentin and p53 expression and to alter HepG2 redox state. If applied to animals experienced HCC in dose of 0.25 mg/kg per day starting at liver cirrhosis stage, C60 fullerene improved post-treatment survival similar to reference 5-fluorouracil (31 and 30 compared to 17 weeks) and inhibited metastasis unlike the latter. Furthermore, C60 fullerene substantially attenuated liver injury and fibrosis, decreased liver enzymes, and normalized bilirubin and redox markers (elevated by 1.7-7.7 times under HCC). Thus, C60 fullerene ability to inhibit HepG2 cell growth and HCC development and metastasis and to improve animal survival was concluded. C60 fullerene cytostatic action might be realized through apoptosis induction and glucose-6-phosphate dehydrogenase downregulation in addition to its antioxidant activity.
Project description:In this work, four water-soluble polythiophene derivatives (PT, PT-DDA, PT-ADA, and PT-ADA-PPR) with different pendant moieties were synthesized via oxidative copolymerization by FeCl3. By increasing the hydrophobic ability of side chain moieties, there is a gradually blue shift for the maximum absorption wavelength and red shift for the maximum emission wavelength, a reducing trend for fluorescence quantum yields, a growing trend for Stokes shift, and an increasing trend for the mean sizes in the order of PT, PT-ADA, and PT-DDA. All the synthesized polymers show low toxicity and good photostability and accumulate in the lysosomes of A549 cells. Furthermore, the introduction of porphyrin group to PT-ADA side chain (PT-ADA-PPR) broadens the absorption and emission ranges of PT-ADA. PT-ADA-PPR could be excited at two different excitation wavelengths (488 nm and 559 nm) and exhibits two emission pathways, and dual-color fluorescence images (orange and red) of PT-ADA-PPR accumulated in A549 cells are observed. Thus, PT-ADA-PPR could be used as an excellent dual-color fluorescent and lysosome-specific imaging material.
Project description:Liver cirrhosis is an outcome of a wide range of liver chronic diseases. It is attributed to oxidative stress; therefore, antioxidant usage could be a promising treatment of that. So, exploring the impact of effective free radical scavenger pristine C60 fullerenes on liver fibrosis and cirrhosis and their ability to interact with main growth factor receptors involved in liver fibrogenesis was aimed to be discovered. We used N-diethylnitrosamine/carbon tetrachloride-induced simulations of rat liver fibrosis (10 weeks) and cirrhosis (15 weeks). Pristine C60 fullerene aqueous colloid solution (C60FAS) was injected daily at a dose of 0.25 mg/kg throughout the experiment. Liver morphology and functional and redox states were assessed. C60 fullerenes' ability to interact with epidermal, vasoendothelial, platelet-derived, and fibroblast growth factor receptors (EGFR, VEGFR, PDGFR, and FGFR, respectively) was estimated by computational modeling. We observed that C60FAS reduced the severity of fibrosis in fibrotic rats (0.75 vs. 3.0 points according to Ishak score), attenuated the hepatocyte injury, normalized elevated blood serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and mitigated oxidative stress manifestation in liver tissue restoring its redox balance. When applied to cirrhotic animals, C60FAS reduced connective tissue deposition as well (2.4 vs. 5.4 points according to Ishak score), diminished ALP and LDH (by 16% and 61%), and normalized conjugated and nonconjugated bilirubin, restoring the liver function. Altered liver lipid and protein peroxides and glutathione peroxidase activity were also leveled. Within a computer simulation, it was shown that C60 fullerenes can block hinge prohibiting ATP binding for EGFR and FGFR and thus blocking associated signal pathways. This ability in addition to their antioxidant properties may contribute to C60 fullerene's antifibrotic action. Thus, C60FAS may have a substantial therapeutic potential as an inhibitor of liver fibrosis and cirrhosis.
Project description:Antisense peptide nucleic acids (PNAs) have yet to translate to the clinic because of poor cellular uptake, limited solubility, and rapid elimination. Cell-penetrating peptides (CPPs) covalently attached to PNAs may facilitate clinical development by improving uptake into cells. We report an efficient technology that utilizes a fully automated fast-flow instrument to manufacture CPP-conjugated PNAs (PPNAs) in a single shot. The machine is rapid, with each amide bond being formed in 10 s. Anti-IVS2-654 PPNA synthesized with this instrument presented threefold activity compared to transfected PNA in a splice-correction assay. We demonstrated the utility of this approach by chemically synthesizing eight anti-SARS-CoV-2 PPNAs in 1 day. A PPNA targeting the 5' untranslated region of SARS-CoV-2 genomic RNA reduced the viral titer by over 95% in a live virus infection assay (IC50 = 0.8 μM). Our technology can deliver PPNA candidates to further investigate their potential as antiviral agents.
Project description:Improving the activity and selectivity profile of anticancer agents will require designing drug carrier systems that employ soluble macromolecules. Olsalazine-PAMAM-dendrimer-salicylic acid-conjugates with dendritic arms of different lengths have shown good stability regarding the chemical link between drug and spacer. In this study, the drug release was followed in vitro by ultraviolet (UV) studies. Evaluation of the cytotoxicity of the olsalazine-PAMAM-dendrimer-salicylic acid-conjugates employing a sulforhodamine B (SRB) assay in PC-3 (human prostatic adenocarcinoma) and MCF-7 (human mammary adenocarcinoma) cell lines demonstrated that conjugate 9 was more active as an antiproliferative agent than cisplatin, and no cytotoxicity towards the African green monkey kidney fibroblast (COS-7) cell line was observed in any of the conjugates synthesized in the present work.