Project description:We investigated activation status, cytotoxic potential, and gut homing ability of the peripheral blood Natural Killer (NK) cells in Crohn disease (CD) patients. For this purpose, we compared the expression of different activating and inhibitory receptors (KIR and non-KIR) and integrins on NK cells as well as their recent degranulation history between the patients and age-matched healthy controls. The study was conducted using freshly obtained peripheral blood samples from the study participants. Multiple color flow cytometry was used for these determinations. Our results show that NK cells from treatment-naïve CD patients expressed higher levels of activating KIR as well as other non-KIR activating receptors vis-à-vis healthy controls. They also showed increased frequencies of the cells expressing these receptors. The expression of several KIR and non-KIR inhibitory receptors tended to decrease compared with the cells from healthy donors. NK cells from the patients also expressed increased levels of different gut-homing integrin molecules and showed a history of increased recent degranulation events both constitutively and in response to their in vitro stimulation. Furthermore, treatment of the patients tended to reverse these NK cell changes. Our results demonstrate unequivocally, for the first time, that peripheral blood NK cells in treatment-naïve CD patients are more activated and are more poised to migrate to the gut compared to their counterpart cells from healthy individuals. Moreover, they show that treatment of the patients tends to normalize their NK cells. The results suggest that NK cells are very likely to play a role in the immunopathogenesis of Crohn disease.
Project description:Natural killer (NK) cells are widely distributed in lymphoid and non-lymphoid tissues, but little is known about the recirculation of NK cells between blood and tissues. This is relevant to understanding recirculation in the steady-state and also for determining the roles for NK cells in vaccine-induced immunity and responses to infection. Therefore, the percentage of NK cells and their phenotype across peripheral blood, afferent lymph and lymph nodes in steady-state conditions was investigated in cattle using the pseudo-afferent lymphatic cannulation model. CD2+ CD25lo NK cells were the predominant subset of NK cells within the blood. In contrast, CD2- CD25hi NK cells were the main subset present within the skin-draining afferent lymphatic vessels and lymph nodes, indicating that CD2- NK cells are the principal NK cell subset trafficking to lymph nodes via the afferent lymphatic vessel. Furthermore, a low percentage of NK cells were present in efferent lymph, which were predominantly of the CD2- subset, indicating that NK cells can egress from lymph nodes and return to circulation in steady-state conditions. These compartmentalization data indicate that NK cells represent a population of recirculating lymphocytes in steady-state conditions and therefore may be important during immune responses to vaccination or infection.
Project description:The goal of this project is todetermine if natural killer (NK) cells could be able to control HIV replication and reduce or eliminate viral reservoirs leading to HIV cure or a functional cure. Despite thirty years of work and significant progress, HIV infection continues to be an incurable disease. Antiretroviral therapy (ART) has significantly decreased the morbidity and mortality, but lifelong treatment is merely suppressive and does not cure HIV/AIDS. This is because of the existence of a reservoir of viral DNA+ (vDNA+) in cells of the lymphoid tissues with an intact provirus that is thought capable of initiating new rounds of HIV replication (i.e. latency). In addition to this inducible reservoir data suggest ongoing low-level virus replication and persistence in lymphatic tissues of some patients that is related to suboptimal drug levels in these tissues. Strategies are needed that can address both issues. NK cells are innate immune effectors that recognize virally infected targets through a cadre of activating and inhibitory receptors but become dysfunctional in HIV infected people. Strikingly, African green monkeys (AGM) and sooty mangabeys mount a strong control of viral replication in lymph node follicles shortly after the viremia peak that lasts throughout infection. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host’s lymph nodes, such as NK cell-mediated control. Indeed, we have recently shown that NK cells could migrate into the b cells follicles in a CXCR5 dependent manner and thus participate to the elimination of viral replication. Thus the purpose of this study is too compare at the transcriptomic level different subset of NK cell isolated from blood and peripheral lymph node of chronically infected AGM to identify a transcriptomic signature which could be linked to an efficient control of SIV replication. This results could then provide a new aproche which could be exploited to generate functional NK cells against HIV in infected patients.
Project description:Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3-/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3-/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3-/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3-/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3-/CD21-/CD14-/NKp46-) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3-/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46- subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.
Project description:Dendritic cells (DC) are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR) agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC), and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.
Project description:Although major steps have been recently made in understanding the role of the distinct subsets of dendritic cells (DC)/antigen-presenting cells (APC), further studies are required to unravel their precise role, including in-depth immunophenotypic characterisation of these cells. Here, we used eight-colour flow cytometry to investigate the reactivity of a panel of 72 monoclonal antibodies (including those clustered in seven new Cluster of Differentiation, CD) on different subsets of APC in peripheral blood (PB) samples from five healthy adults. These experiments were performed in the context of the Tenth International Workshop on Human Leukocyte Differentiation Antigens (HLDA10). Plasmacytoid DC was the only cell population that expressed CD85g and CD195, whereas they lacked all of the other molecules investigated. In contrast, myeloid DC mostly expressed inhibitory C-type lectin receptors (CLRs) and other inhibitory-associated molecules, whereas monocytes expressed both inhibitory and activating CLRs, together with other phagocytosis-associated receptors. Within monocytes, progressively lower levels of expression were generally observed from classical monocytes (cMo) to SLAN- and SLAN+ non-classical monocytes (ncMo) for most of the molecules expressed, except for the CD368 endocytic receptor. This molecule was found to be positive only in cMo, and the CD369 and CD371 modulating/signalling receptors. In addition, the CD101 inhibitory molecule was found to be expressed at higher levels in SLAN+ vs SLAN- ncMo. In summary, the pattern of expression of the different signalling molecules and receptors analysed in this work varies among the distinct subsets of PB APCs, with similar profiles for molecules within each functional group. These findings suggest unique pattern-recognition and signalling capabilities for distinct subpopulations of APCs, and therefore, diverse functional roles.
Project description:BACKGROUND:The association between natural killer (NK) cells and survival in colorectal cancer (CRC) patients remains controversial. This study aimed to clarify the prognostic value of peripheral blood NK cells in CRC patients. METHODS:A total of 447 CRC patients who underwent radical surgery and chemotherapy were retrospectively analyzed. Cox regression analyses were used to identify independent prognostic indicators. Correlation between NK cell percentage and other clinicopathological features (gender, age, histological grade, tumor stage, immune cells, and inflammatory indicators) was analyzed. The prognostic values of the combinations of NK cell percentage and other clinicopathological features were also determined. RESULTS:Multivariate Cox regression analysis revealed that NK cell percentage in the peripheral blood was an independent prognostic indicator in CRC patients. A higher percentage of NK cells indicated a longer survival time than a lower percentage. NK cell percentage was positively correlated to the T and B lymphocyte counts and negatively correlated to the patients' age and albumin levels. With an area of 0.741 under a receiver operating characteristic curve, NK cells have a moderate predictive value for 3rd-year survival in CRC. This area increased to 0.851 by combining NK cell percentage with the B lymphocyte count. Elderly patients and those at an advanced clinical stage presented a lower percentage of NK cells than younger patients and those at an early clinical stage. CONCLUSIONS:This study demonstrated that NK cells in the blood were an independent predictor of survival in CRC patients, and the combined count of NK cells and B lymphocytes could increase the prognostic value.
Project description:Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT-PCR, flow cytometry, and functional analysis. Additionally, we compared the identified characteristics to peripheral blood (PB) CD56(bright) and CD56(dim) NK cells. The data show sequential expression of CD56 and the CD94 and NKG2 receptor chains during ex vivo NK cell development, resulting finally in the expression of a range of genes with partial characteristics of CD56(bright) and CD56(dim) NK cells from PB. Expression of characteristic NK cell receptors and cytotoxic genes was mainly found within the predominant ex vivo generated population of NKG2A+ NK cells, indicating the importance of NKG2A expression during NK cell differentiation and maturation. Furthermore, despite distinct phenotypic characteristics, the detailed analysis of cytolytic genes expressed within the ex vivo differentiated NK cells revealed a pattern close to CD56(dim) NK cells. In line with this finding, ex vivo generated NK cells displayed potent cytotoxicity. This supports that the ex vivo differentiation system faithfully reproduces major steps of the differentiation of NK cells from their progenitors, constitutes an excellent model to study NK cell differentiation, and is valuable to generate large-scale NK cells appropriate for immunotherapy.
Project description:The characterization of frequency and phenotypes of natural killer (NK) cells and T cells in BAL and peripheral blood of patients with sarcoidosis was evaluated, to discriminate the differential status of these cells in these two compartments. The analysis revealed that CD56brightCD16neg resulted higher in BAL than PB of sarcoidosis and healthy subjects, while CD56dimCD16+ showed a different proportion between BAL and PB of both Sarcoidosis patients and HC. Moreover, in comparison with autologous PB, BAL was characterized by a higher expression of activated NK cell markers NKp44, CD69 and CD25. Significantly increased levels of PD-1+ NK cells in the BAL of patients were detected. Regarding the maturation of CD4 and CD8, an increase of Effector Memory T cells (TEM) was reported in BAL compared to PB. A better characterization of NK and T cells may lead to an improvement of the pathogenetic mechanisms in sarcoidosis.