Project description:Flexible electrodes for energy storage and conversion require a micro-nanomorphology and stable structure. Herein, MXene fibers (MX-CNF) are fabricated by electrospinning, and Co-MOF nanoarrays are prepared on the fibers to form Co-MOF@MX-CNF. Hydrolysis and etching of Co-MOF@MX-CNF in the Ni2+ solution produce cobalt-nickel layered double hydroxide (CoNi-LDH). The CoNi-LDH nanoarrays on the MX-CNF substrate have a large specific surface area and abundant electrochemical active sites, thus ensuring effective exposure of the CoNi-LDH active materials to the electrolyte and efficient pseudocapacitive energy storage and fast reversible redox kinetics for enhanced charging-discharging characteristics. The CoNi-LDH@MX-CNF electrode exhibits a discharge capacity of 996 F g-1 at a current density of 1 A g-1 as well as 78.62% capacitance retention after 3,000 cycles at 10 A g-1. The asymmetric supercapacitor (ASC) comprising the CoNi-LDH@MX-CNF positive electrode and negative activated carbon electrode shows an energy density of 48.4 Wh kg-1 at a power density of 499 W kg-1 and a capacity retention of 78.9% after 3,000 cycles at a current density of 10 A g-1. Density-functional theory calculations reveal the charge density difference and partial density of states of CoNi-LDH@MX-CNF confirming the large potential of the CoNi-LDH@MX-CNF electrode in energy storage applications.
Project description:Single atom catalyst, which contains isolated metal atoms singly dispersed on supports, has great potential for achieving high activity and selectivity in hetero-catalysis and electrocatalysis. However, the activity and stability of single atoms and their interaction with support still remains a mystery. Here we show a stable single atomic ruthenium catalyst anchoring on the surface of cobalt iron layered double hydroxides, which possesses a strong electronic coupling between ruthenium and layered double hydroxides. With 0.45 wt.% ruthenium loading, the catalyst exhibits outstanding activity with overpotential 198 mV at the current density of 10 mA cm-2 and a small Tafel slope of 39 mV dec-1 for oxygen evolution reaction. By using operando X-ray absorption spectroscopy, it is disclosed that the isolated single atom ruthenium was kept under the oxidation states of 4+ even at high overpotential due to synergetic electron coupling, which endow exceptional electrocatalytic activity and stability simultaneously.
Project description:Layered double hydroxides (LDHs) have drawn significant interest as emerging active materials for advanced energy storage devices; however, their low electric and ionic conductivity limit their applications. In this study, we report sulfur (S) and phosphorus (P) co-doped NiCo LDH nanoarrays prepared via a facile phosphor-sulfurization process to impart diverse co-doping effects. Combining the benefits of their unique hierarchical structure and reduced charge transfer resistance, the S and P co-doped NiCo LDH (NiCo LDH-SP) nanoarrays realize faster and more efficient redox reactions and achieve enhanced surface reactivity, thereby resulting in a performance superior to that of pristine NiCo LDH. Therefore, a NiCo LDH-SP shows an ultra-high specific capacitance of 3844.8 F g-1 at a current density of 3 A g-1 and maintains a specific capacitance of 2538.8 F g-1 at a high current density of 20 A g-1. Additionally, an asymmetric supercapacitor, assembled with the NiCo LDH-SP as the cathode and activated carbon (AC) as the anode (NiCo LDH-SP//AC), shows a high energy density of 74.5 W h kg-1 at a power density of 0.8 kW kg-1 and outstanding cycling stability, thereby retaining ∼81.3% of its initial specific capacitance after 5000 cycles. This study presents a facile and promising strategy for developing LDH-based electrode materials with excellent electrochemical performance for advanced energy storage applications.
Project description:Layered double hydroxides (LDHs) constitute a unique group of 2D materials that can deliver exceptional catalytic, optical, and electronic performance. However, they usually suffer from low stability compared to their oxide counterparts. Using density functional calculations, we quantitatively demonstrate the crucial impact of the intercalants (i.e., water, lactate, and carbonate) on the stability of a series of common LDHs based on Mn, Fe, and Co. We found that intercalation with the singly charged lactate results in higher stability in all these LDH compounds, compared to neutral water and doubly charged carbonate. Furthermore, we show that the dispersion effect aids the stability of these LDH compounds. This investigation reveals that certain intercalants enhance LDH stability and alter the bandgap favourably.
Project description:We report a general method for the synthesis of core-shell hybrid materials containing a microporous zeolite core with an aqueous miscible organic-layered double hydroxide (AMO-LDH) shell using a simple in situ coprecipitation method. For example, zeolite-HY@AMO-Mg2Al-CO3-LDH contains a 150 nm hierarchical AMO-Mg2Al-CO3-LDH surface coating on zeolite-HY. It exhibits a similar BET surface area (698 m2 g-1) as the parent zeolite-HY but this surface area has been re-allocated between microspores and mesopores. We believe that surface aluminium sites act as nucleation sites for the formation of the LDH coating and so robustly links it into the zeolite lattice. We expect that this new hybrid structure with micropores dominating in the core and mesopores populating the shell will provide a desirable new hybrid structure type for adsorption or catalysis.
Project description:Effective protective coatings are an essential component of lightweight engineering materials in a large variety of applications as they ensure structural integrity of the base material throughout its whole service life. Layered double hydroxides (LDHs) loaded with corrosion inhibitors depict a promising approach to realize an active corrosion protection for aluminum and magnesium. In this work, we employed a combination of density functional theory and molecular dynamics simulations to gain a deeper understanding of the influence of intercalated water content on the structure, the stability, and the anion-exchange capacity of four different LDH systems containing either nitrate, carbonate, or oxalate as potential corrosion inhibiting agents or chloride as a corrosion initiator. To quantify the structural change, we studied the atom density distribution, radial distribution function, and orientation of the intercalated anions. Additionally, we determined the stability of the LDH systems by calculating their respective hydration energies, hydrogen-bonded network connected to the intercalated water molecules, as well as the self-diffusion coefficients of the intercalated anions to provide an estimate for the probability of their release after intercalation. The obtained computational results suggest that the hydration state of LDHs has a significant effect on their key properties like interlayer spacing and self-diffusion coefficients of the intercalated anions. Furthermore, we conclude from our simulation results that a high self-diffusion coefficient which is linked to the mobility of the intercalated anions is vital for its release via an anion-exchange mechanism and to subsequently mitigate corrosion reactions. Furthermore, the presented theoretical study provides a robust force field for the computer-assisted design of further LDH-based active anticorrosion coatings.
Project description:Research on two-dimensional materials is one of the most relevant fields in materials science. Layered double hydroxides (LDHs), a versatile class of anionic clays, exhibit great potential in photocatalysis, energy storage and conversion, and environmental applications. However, its implementation in real-life devices requires the development of efficient and reproducible large-scale synthesis processes. Unfortunately, reliable methods that allow for the production of large quantities of two-dimensional LDHs with well-defined morphologies and high crystallinity are very scarce. In this work, we carry out a scale-up of the urea-based CoAl-LDH synthesis method. We thoroughly study the effects of the mass scale-up (25-fold: up to 375 mM) and the volumetric scale-up (20-fold: up to 2 L). For this, we use a combination of several structural (XRD, TGA, and N2 and CO2 isotherms), microscopic (SEM, TEM, and AFM), magnetic (SQUID), and spectroscopic techniques (ATR-FTIR, UV-vis, XPS, ICP-MS, and XANES-EXAFS). In the case of the volumetric scale-up, a reduction of 45% in the lateral dimensions of the crystals (from 3.7 to 2.0 µm) is observed as the reaction volume increases. This fact is related to modified heating processes affecting the alkalinization rates and, concomitantly, the precipitation, even under recrystallization at high temperatures. In contrast, for the tenfold mass scale-up, similar morphological features were observed and assigned to changes in nucleation and growth. However, at higher concentrations, simonkolleite-like Co-based layered hydroxide impurities are formed, indicating a phase competition during the precipitation related to the thermodynamic stability of the growing phases. Overall, this work demonstrates that it is possible to upscale the synthesis of high-quality hexagonal CoAl-LDH in a reproducible manner. It highlights the most critical synthesis aspects that must be controlled and provides various fingerprints to trace the quality of these materials. These results will contribute to bringing the use of these 2D layered materials closer to reality in different applications of interest.
Project description:This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH-polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.
Project description:High-entropy materials are compositionally complex materials which often contain five or more elements. The most commonly studied materials in this field are alloys and oxides, where their composition allows for tunable materials properties. High-entropy layered double hydroxides have been recently touted as the next focus for the field of high-entropy materials to expand into. However, most previous work on multi-cationic layered double hydroxides has focused on syntheses with 5 or less cations in the structure. To bridge this gap into high-entropy materials, this work explores the range and extent of different compositional combinations for high-entropy double layered hydroxides. Specifically, pure layered double hydroxides were synthesized with different combinations of 7 cations (Mg, Co, Cu, Zn, Ni, Al, Fe, Cr) as well as one combination of 8 cations by utilizing a hydrothermal synthesis method. Furthermore, magnetic properties of the 8-cation LDH were investigated.
Project description:The aim of this study was to realize the intercalation of the pyrethroid pesticides beta-cypermethrin (BCT) and lambda-cyhalothrin (LCT) into ZnAl-layered double hydroxides (LDH) and NiZn-layered hydroxide salt (LHS). BCT (LCT)/SBECD-LDH and BCT (LCT)/SBECD-LHS hybrids were obtained with the aid of sulfobutyl ether β-cyclodextrin (SBECD) through one step method. The hybrids were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry and differential thermal analysis (TGA/DTA). The hybrids based on LHS had larger basal spacing than those on LDH. The LDH-hybrids prepared in N-methylpyrrolidone (NMP) had larger basal spacing than those in ethanol. These results were discussed in terms of the matrix structure and solvent properties. The supramolecular structure of the hybrid was reasonably proposed. Furthermore, the release properties of BCT (LCT) from the hybrids were investigated and discussed in two media. The release rate in pH = 5.0 was slower than that in pH = 6.8. The accumulated release amount of pesticide in pH = 5.0 was lower than that in pH = 6.8. LHS-hybrids synthesized in ethanol exhibit a sustainable release property. These depend on the inclusion complexes' arrangement and release medium. The release kinetic processes could be described by pseudo-second order and parabolic diffusion models. The release behavior can be controlled by adjusting the synthesis conditions and the releasing media. This provides the guidance for the application of SBECD and LDH (LHS) in pesticide formulation.