Project description:This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence (at different excitation wavelengths (from 300 nm to 400 nm), ellipsometry spectroscopy, and light transmittance/reflectance measurements for a range of wavelengths that provide information on modifications related to both visible and near-infrared regions. Chemical surface characterization of the three IL/NPAS samples was performed by X-ray photoelectron spectroscopy (XPS), which indicates almost total support coverage by the ILs. The IL/NPAS analyzed samples exhibit different photoluminescence behavior, high transparency (<85%), and a reflection maximum at wavelength ~380 nm, with slight differences depending on the IL, while the refractive index values are rather similar to those shown by the ILs. Moreover, the illuminated I-V curves (under standard conditions) of the IL/NPAS samples were also measured for determining the efficiency energy conversion to estimate their possible application as solar cells. On the other hand, a computational quantum mechanical modeling method (DFT) was used to establish the most stable bond between the ILs and the NPAS support.
Project description:Changes associated to atomic layer deposition (ALD) of SiO2 from 3-aminopropyl triethoxysilane (APTES) and O3, on a nanoporous alumina structure, obtained by two-step electrochemical anodization in oxalic acid electrolyte (Ox sample) are analysed. A reduction of 16% in pore size for the Ox sample, used as support, was determined by SEM analysis after its coverage by a SiO2 layer (Ox+SiO2 sample), independently of APTES or O3 modification (Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples). Chemical surface modification was determined by X-ray photoelectron spectroscopy (XPS) technique during the different stages of the ALD process, and differences induced at the surface level on the Ox nanoporous alumina substrate seem to affect interfacial effects of both samples when they are in contact with an electrolyte solution according to electrochemical impedance spectroscopy (EIS) measurements, or their refraction index as determined by spectroscopic ellipsometry (SE) technique. However, no substantial differences in properties related to the nanoporous structure of anodic alumina (photoluminescent (PL) character or geometrical parameters) were observed between Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples.
Project description:Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field.
Project description:A unique, but unifying, feature of ionic liquids (ILs) is that they are nanostructured on the length scale of the ions; in many ILs well-defined polar and apolar domains exist and may percolate through the liquid. Near a surface the isotropic symmetry of the bulk structure is broken, resulting in different nanostructures which, until now, have only been studied indirectly. In this paper, in situ amplitude modulated atomic force microscopy (AM-AFM) has been used to resolve the 3-dimensional nanostructure of five protic ILs at and near the surface of mica. The surface and near surface structures are distinct and remarkably well-defined, but are very different from previously accepted descriptions. Interfacial nanostructure is strongly influenced by the registry between cations and the mica surface charge sites, whereas near surface nanostructure is sensitive to both cation and anion structure. Together these ILs reveal how interfacial nanostructure can be tuned through ion structure, informing "bottom-up" design and optimisation of ILs for diverse technologies including heterogeneous catalysis, lubrication, electrochemical processes, and nanofluids.
Project description:Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels.Pacs63.22.Np Layered systems; 68. Surfaces and interfaces; Thin films and nanosystems (structure and non-electronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization.
Project description:This study explores the optical and electrochemical properties of a ZnO coating layer deposited on a nanoporous alumina structure (NPAS) for potential multifunctional applications. The NPAS, synthesized through an electrochemical anodization process, displays well-defined nanochannels with a high aspect ratio (~3000). The ZnO coating, achieved via atomic layer deposition, enables the tuning of the pore diameter and porosity of the NPAS, thereby influencing both the optical and electrochemical interfacial properties. A comprehensive characterization using photoluminescence, spectroscopy ellipsometry and impedance spectroscopy (with the sample in contact with NaCl solutions) provides insights into optical and electrochemical parameters, including the refractive index, absorption coefficient, and electrolyte-ZnO/NPAS interface processes. This research demonstrates potential for tailoring the optical and interfacial properties of nanoporous structures by selecting appropriate coating materials, thus opening avenues for their utilization in various technological applications.
Project description:This study presents a nanofabrication approach that enables the production of nanoporous anodic alumina distributed Bragg reflectors (NAA-DBRs) with finely engineered light filtering features across the spectral regions. The photonic stopband (PSB) of these NAA-based photonic crystal (PC) structures is precisely tuned by an apodization strategy applied during stepwise pulse anodization with the aim of engineering the effective medium of NAA-DBRs in depth. We systematically assess the effect of different fabrication parameters such as apodization function (i.e. linear positive, linear negative, logarithmic positive and logarithmic negative), amplitude difference (from 0.105 to 0.420 mA cm-2), current density offset (from 0.140 to 0.560 mA cm-2), anodization period (from 1100 to 1700 s), and pore widening time (from 0 to 6 min) on the quality and central wavelength of the PSB of NAA-DBRs. The PSB's features these PC structures are demonstrated to be highly tunable with the fabrication parameters, where a logarithmic negative apodization is found to be the most effective function to produce NAA-DBRs with high quality PSBs across the UV-visible-NIR spectrum. Our study establishes that apodized NAA-DBRs are more sensitive to changes in their effective medium than non-apodized NAA-DBRs, making them more suitable sensing platforms to develop advanced optical sensing systems.
Project description:The photocorrosion of a nanoporous carbon photoanode, with low surface functionalization and high performance towards the photoelectrochemical oxidation of water using simulated solar light, was investigated. Two different light configurations were used to isolate the effect of the irradiation wavelength (UV and visible light) on the textural and chemical features of the carbon photoanode, and its long-term photocatalytic performance for the oxygen evolution reaction. A complete characterization of the carbon showed that the photocorrosion of carbon anodes of low functionalization follows a different pathway than highly functionalized carbons. The carbon matrix gets slightly oxidized, with the formation of carboxylic and carbonyl-like moieties in the surface of the carbon anode after light exposure. The oxidation of the carbon occurred due to the photogeneration of oxygen reactive species upon the decomposition of water during the irradiation of the photoanodes. Furthermore, the photoinduced surface reactions depend on the nature of the carbon anode and its ability to photogenerate reactive species in solution, rather than on the wavelength of the irradiation source. This surface modification is responsible for the decreased efficiency of the carbon photoanode throughout long illumination periods, due to the effect of the oxidation of the carbon matrix on the charge transfer. In this work, we have corroborated that, in the case of a low functionalization carbon material, the photocorrosion also occurs although it proceeds through a different pathway. The carbon anode gets gradually slightly oxidized due to the photogeneration of O-reactive species, being the incorporation of the O-groups responsible for the decreased performance of the anode upon long-term irradiation due to the effect of the oxidation of the carbon matrix on the electron transfer.
Project description:Optical characterization of nanoporous alumina-based structures (NPA-bSs), obtained by ALD deposition of a thin conformal SiO2 layer on two alumina nanosupports with different geometrical parameters (pore size and interpore distance), was performed by two noninvasive and nondestructive techniques such as spectroscopic ellipsometry (SE) and photoluminescence (Ph) spectra. SE measurements allow us to estimate the refraction index and extinction coefficient for the studied samples and their dependence with wavelength for the 250–1700 nm interval, showing the effect of sample geometry and cover-layer material (SiO2, TiO2, or Fe2O3), which significantly affect the oscillatory character of both parameters, as well as changes associated with the light incidence angle, which are attributed to surface impurities and inhomogeneity. Photoluminescence curves exhibit a similar shape independently of sample pore-size/porosity, but they seem to affect intensity values. This analysis shows the potential application of these NPA-bSs platforms to nanophotonics, optical sensing, or biosensing.
Project description:An ionic liquid-based thin (~ 1 µm) colorimetric membrane (CM) is a key nano-tool for optical ion sensing, and a two-dimensional photonic crystal slab (PCS) is an important nano-platform for ultimate light control. For highly sensitive optical ion sensing, this report proposes a hybrid of these two optical nano-elements, namely, a CM/PCS hybrid. This structure was successfully fabricated by a simple and rapid process using nanoimprinting and spin-coating, which enabled control of the CM thickness. Optical characterization of the hybrid structure was conducted by optical measurement and simulation of the reflection spectrum, indicating that the light confined in the holes of the PCS was drastically absorbed by the CM when the spectrum overlapped with the absorption spectrum of the CM. This optical property obtained by the hybridization of CM and PCS enabled drastic improvement in the absorption sensitivity in Ca ion sensing, by ca. 78 times compared to that without PCS. Experimental and simulated investigation of the relation between the CM thickness and absorption sensitivity enhancement suggested that the controlled light in the PCS enhanced the absorption cross-section of the dye molecules within the CM based on the enhanced local density of states. This highly sensitive optical ion sensor is expected to be applied for micro-scale bio-analysis like cell-dynamics based on reflectometric Ca ion detection.