Project description:The widespread use of silver nanoparticles (Ag-NPs) in consumer and medical products provides strong motivation for a careful assessment of their environmental and human health risks. Recent studies have shown that Ag-NPs released to the natural environment undergo profound chemical transformations that can affect silver bioavailability, toxicity, and risk. Less is known about Ag-NP chemical transformations in biological systems, though the medical literature clearly reports that chronic silver ingestion produces argyrial deposits consisting of silver-, sulfur-, and selenium-containing particulate phases. Here we show that Ag-NPs undergo a rich set of biochemical transformations, including accelerated oxidative dissolution in gastric acid, thiol binding and exchange, photoreduction of thiol- or protein-bound silver to secondary zerovalent Ag-NPs, and rapid reactions between silver surfaces and reduced selenium species. Selenide is also observed to rapidly exchange with sulfide in preformed Ag(2)S solid phases. The combined results allow us to propose a conceptual model for Ag-NP transformation pathways in the human body. In this model, argyrial silver deposits are not translocated engineered Ag-NPs, but rather secondary particles formed by partial dissolution in the GI tract followed by ion uptake, systemic circulation as organo-Ag complexes, and immobilization as zerovalent Ag-NPs by photoreduction in light-affected skin regions. The secondary Ag-NPs then undergo detoxifying transformations into sulfides and further into selenides or Se/S mixed phases through exchange reactions. The formation of secondary particles in biological environments implies that Ag-NPs are not only a product of industrial nanotechnology but also have long been present in the human body following exposure to more traditional chemical forms of silver.
Project description:The fungistatic nature and toxicity concern associated with the azole drugs currently on the market have resulted in an increased demand for new azole antifungal agents for which these problematic characteristics do not exist. The extensive use of azoles has resulted in fungal strains capable of resisting the action of these drugs. Herein, we report the synthesis and antifungal activity of novel fluconazole (FLC) analogues with alkyl-, aryl-, cycloalkyl-, and dialkyl-amino substituents. We evaluated their antifungal activity by MIC determination and time-kill assay as well as their safety profile by hemolytic activity against murine erythrocytes as well as cytotoxicity against mammalian cells. The best compounds from our study exhibited broad-spectrum activity against most of the fungal strains tested, with excellent MIC values against a number of clinical isolates. The most promising compounds were found to be less hemolytic than the least hemolytic FDA-approved azole antifungal agent voriconazole (VOR). Finally, we demonstrated that the synthetic alkyl-amino FLC analogues displayed chain-dependent fungal membrane disruption as well as inhibition of ergosterol biosynthesis as possible mechanisms of action.
Project description:A series of benzo[d]imidazole analogues of thiabenzole were synthesized and their antiinflammatory activities toward NLRP3 (nucleotide-binding domain leucine-rich repeat containing protein family,pyrin domain-containing 3,also known as cryopyrin or NALP3) inflammasome were evaluated in vitro. Two lead compounds, TBZ-09 and TBZ-21, were identified by antiproduction of IL-1β. In the second round of biological evaluation, based on the lead, 34 more compounds were synthesized and their in vitro anti-inflammatory activities were investigated. Several compounds were identified as anti-inflammatory agents that can reduce IL-1β expression in a dosedependent manner. A preliminary structure-activity relationship is also summarized here.
Project description:Amaryllidaceae alkaloids (AAs) are a structurally diverse family of alkaloids recognized for their many therapeutic properties, such as antiviral, anti-cholinesterase, and anticancer properties. Norbelladine and its derivatives, whose biological properties are poorly studied, are key intermediates required for the biosynthesis of all ~650 reported AAs. To gain insight into their therapeutic potential, we synthesized a series of O-methylated norbelladine-type alkaloids and evaluated their cytotoxic effects on two types of cancer cell lines, their antiviral effects against the dengue virus (DENV) and the human immunodeficiency virus 1 (HIV-1), and their anti-Alzheimer’s disease (anti-cholinesterase and -prolyl oligopeptidase) properties. In monocytic leukemia cells, norcraugsodine was highly cytotoxic (CC50 = 27.0 μM), while norbelladine was the most cytotoxic to hepatocarcinoma cells (CC50 = 72.6 μM). HIV-1 infection was impaired only at cytotoxic concentrations of the compounds. The 3,4-dihydroxybenzaldehyde (selectivity index (SI) = 7.2), 3′,4′-O-dimethylnorbelladine (SI = 4.8), 4′-O-methylnorbelladine (SI > 4.9), 3′-O-methylnorbelladine (SI > 4.5), and norcraugsodine (SI = 3.2) reduced the number of DENV-infected cells with EC50 values ranging from 24.1 to 44.9 μM. The O-methylation of norcraugsodine abolished its anti-DENV potential. Norbelladine and its O-methylated forms also displayed butyrylcholinesterase-inhibition properties (IC50 values ranging from 26.1 to 91.6 μM). Altogether, the results provided hints of the structure−activity relationship of norbelladine-type alkaloids, which is important knowledge for the development of new inhibitors of DENV and butyrylcholinesterase.
Project description:Condensation of diacetyl monooxime with formaldimines derived from alkoxyamines in glacial acetic acid at room temperature leads to corresponding 2-unsubstituted imidazole N-oxides bearing an alkoxy substituent at the N(1) atom of the imidazole ring. Subsequent O-benzylation afforded, depending on the type of alkylating agent, either symmetric or nonsymmetric alkoxyimidazolium salts considered as structural analogues of naturally occurring imidazole alkaloids, lepidilines A and C. Some of the obtained salts were tested as precursors of nucleophilic heterocyclic carbenes (NHCs), which in situ reacted with elemental sulfur to give the corresponding N-alkoxyimidazole-2-thiones. The cytotoxic activity of selected 4,5-dimethylimidazolium salts bearing either two benzyloxy or benzyloxy and 1-adamantyloxy groups at N(1) and N(3) atoms was evaluated against HL-60 and MCF-7 cell lines using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Notably, in two cases of alkoxyimidazolium salts, no effect of the counterion exchange (Br- → PF6-) on the biological activity was observed.
Project description:Direct anti-tuberculosis screening of commercially available compound libraries identified a novel piperidinol with interesting anti-tuberculosis activity and drug like characteristics. To generate a structure activity relationship about this hit a 22 member optimization library was generated using parallel synthesis. Products of this library 1-((R)-3-(4-chlorophenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl)piperidin-4-ol and 1-((S)-3-(4-(trifluoromethyl) phenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl) piperidin-4-ol demonstrated good anti-tuberculosis activity. Unfortunately, side effects were observed upon in vivo anti-tuberculosis testing of these compounds precluding their further advancement, which may be in part due to the secondary pharmacology associated with the aryl piperidinol core.
Project description:Assessing the molecular mechanism of a chemical-biological interaction and bonding stands as the ultimate goal of any modern quantitative structure-activity relationship (QSAR) study. To this end the present work employs the main chemical reactivity structural descriptors (electronegativity, chemical hardness, chemical power, electrophilicity) to unfold the variational QSAR though their min-max correspondence principles as applied to the Simplified Molecular Input Line Entry System (SMILES) transformation of selected uracil derivatives with anti-HIV potential with the aim of establishing the main stages whereby the given compounds may inhibit HIV infection. The bonding can be completely described by explicitly considering by means of basic indices and chemical reactivity principles two forms of SMILES structures of the pyrimidines, the Longest SMILES Molecular Chain (LoSMoC) and the Branching SMILES (BraS), respectively, as the effective forms involved in the anti-HIV activity mechanism and according to the present work, also necessary intermediates in molecular pathways targeting/docking biological sites of interest.
Project description:BackgroundPlant diseases seriously threaten food security, it is urgent to discover efficient and low-risk chemical pesticides. 1,2,4-Oxadiazole derivatives exhibit broad spectrum of agricultural biological activities. For discovering novel molecules with excellent agricultural activities, novel 1,2,4-oxadiazole derivatives were synthesized and evaluated for their agricultural activities.ResultBioassays results showed that the title compounds exhibited moderate nematocidal activity against Meloidogyne incognita and anti-fungal activity to Rhizoctonia solani. It's worth noting that compounds 5m, 5r, 5u, 5v, 5x and 5y showed strong antibacterial effects on Xanthomonas oryzae pv. oryzae (Xoo), with EC50 values of 36.25, 24.14, 28.82, 19.44, 25.37 and 28.52 ?g/mL, respectively, superior to bismerthiazol (BMT, EC50?=?77.46 ?g/mL) and thiodiazole copper (TDC, EC50?=?99.31 ?g/mL). Compounds 5p, 5u and 5v exhibited excellent antibacterial ability against Xanthomonas oryzae pv. oryzicola (Xoc), with EC50 values of 31.40, 19.04 and 21.78 ?g/mL, respectively, better than that of BMT (EC50?=?68.50 ?g/mL) and TDC (EC50?=?91.05 ?g/mL). In addition, compound 5v exerted moderate antibacterial effects on rice bacterial leaf blight.ConclusionsTwenty-six novel 1,2,4-oxadiazole derivatives were obtained and their biological activities were evaluated. Compound 5u and 5v exhibited excellent antibacterial activity Xoo and Xoc. These results indicated that 1,2,4-oxadiazole derivatives containing a trifluoromethyl pyridine moiety could be as potential alternative templates for discovering novel antibacterial agents.
Project description:A series of pleuromutilin derivatives were synthesized by two synthetic procedures under mild reaction conditions and characterized by Nuclear Magnetic Resonance (NMR), Infrared Spectroscopy (IR), and High Resolution Mass Spectrometer (HRMS). Most of the derivatives with heterocyclic groups at the C-14 side of pleuromutilin exhibited excellent in vitro antibacterial activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), and vancomycin-resistant Enterococcus (VRE) in vitro antibacterial activity. The synthesized derivatives which contained pyrimidine rings, 3a, 3b, and 3f, displayed modest antibacterial activities. Compound 3a, the most active antibacterial agent, displayed rapid bactericidal activity and affected bacterial growth in the same manner as that of tiamulin fumarate. Moreover, molecular docking studies of 3a and lefamulin provided similar information about the interactions between the compounds and 50S ribosomal subunit. The results of the study show that pyrimidine rings should be considered in the drug design of pleuromutilin derivatives.
Project description:A series of novel coumarin-3-carboxamide derivatives were designed and synthesized to evaluate their biological activities. The compounds showed little to no activity against gram-positive and gram-negative bacteria but specifically showed potential to inhibit the growth of cancer cells. In particular, among the tested compounds, 4-fluoro and 2,5-difluoro benzamide derivatives (14b and 14e, respectively) were found to be the most potent derivatives against HepG2 cancer cell lines (IC50 = 2.62-4.85 μM) and HeLa cancer cell lines (IC50 = 0.39-0.75 μM). The activities of these two compounds were comparable to that of the positive control doxorubicin; especially, 4-flurobenzamide derivative (14b) exhibited low cytotoxic activity against LLC-MK2 normal cell lines, with IC50 more than 100 μM. The molecular docking study of the synthesized compounds revealed the binding to the active site of the CK2 enzyme, indicating that the presence of the benzamide functionality is an important feature for anticancer activity.