Landscape analysis of alternative splicing in kidney renal clear cell carcinoma and their clinical significance.
Ontology highlight
ABSTRACT: A growing number of studies reveal that alternative splicing (AS) is associated with tumorigenesis, progression, and metastasis. Systematic analysis of alternative splicing signatures in renal cancer is lacking. In our study, we investigated the AS landscape of kidney renal clear cell carcinoma (KIRC) and identified AS predictive model to improve the prognostic prediction of KIRC. We obtained clinical data and gene expression profiles of KIRC patients from the TCGA database to evaluate AS events. The calculation results for seven types of AS events indicated that 46276 AS events from 10577 genes were identified. Next, we applied Cox regression analysis to identify 5864 prognostic-associated AS events. We used the Metascape database to verify the potential pathways of prognostic-associated AS. Moreover, we constructed KIRC prediction systems with prognostic-associated AS events by the LASSO Cox regression model. AUCs demonstrated that these prediction systems had excellent prognostic accuracy simultaneously. We identified 34 prognostic associated splicing factors (SFs) and constructed homologous regulatory networks. Furthermore, in vitro experiments were performed to validate the favorable effect of SFs FMR1 in KIRC. In conclusion, we overviewed AS events in KIRC and identified AS-based prognostic models to assist the survival prediction of KIRC patients. Our study may provide a novel predictive signature to improve the prognostic prediction of KIRC, which might facilitate KIRC patient counseling and individualized management.
SUBMITTER: Cheng S
PROVIDER: S-EPMC11210227 | biostudies-literature | 2024 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA