Project description:Pancreatic ductal adenocarcinoma (PDAC) has a 5-year survival rate below 5%. Carbohydrate antigen 19-9 (CA19-9) is the most commonly used blood-based biomarker for PDAC in current clinical practice, despite having been shown repeatedly to be inaccurate and have poor diagnostic performance. This review aims to assess the reported diagnostic accuracy of all blood-based biomarkers investigated to date in PDAC, by directly comparing individual biomarkers and multi-biomarker panels, both containing CA19-9 and not (novel). A systematic review was conducted in accordance with PRISMA standards in July 2020. Individualized search strategies for three academic databases identified 5,885 studies between the years 1973 and 2020. After two rounds of screening, 250 studies were included. Data were extracted and assessed for bias. A multivariate three-level meta-analysis with subgroup moderators was run in R using AUC values as effect size. On the basis of this model, the pooled AUC value for all multi-biomarker panels (AUC = 0.898; 95% confidence interval (CI): 0.88-0.91) was significantly higher than all single biomarkers (AUC = 0.803; 95% CI: 0.78-0.83; P < 0.0001). The pooled AUC value for CA19-9 alone was significantly lower compared with the multi-biomarker panels containing CA19-9 (P < 0.0001). For the novel biomarkers, the pooled AUC for single biomarkers was also significantly lower compared with multi-biomarker panels (P < 0.0001). Novel biomarkers that have been repeatedly examined across the literature, such as TIMP-1, CEA, and CA125, are highlighted as promising. These results suggest that CA19-9 may be best used as an addition to a panel of biomarkers rather than alone, and that multi-biomarker panels generate the most robust results in blood-based PDAC diagnosis.SignificanceIn a systematic review and three-level multivariate meta-analysis, it is shown for the first time that blood-based multi-biomarker panels for the diagnosis of PDAC exhibit superior performance in comparison with single biomarkers. CA19-9 is demonstrated to have limited utility alone, and to perform poorly in patient control cohorts of both healthy and benign individuals. Multi-biomarker panels containing CA19-9 produce the best diagnostic performance overall.
Project description:BackgroundChronic inflammation may promote initiation and progression of pancreatic cancer, but no studies have examined the association between inflammation in the period before diagnosis and pancreatic cancer survival.MethodsWe prospectively examined the association of prediagnostic plasma levels of C-reactive protein, interleukin-6, and tumor necrosis factor-α receptor 2 with survival among 492 participants from 5 large US prospective cohort studies who developed pancreatic cancer. Using an empirical dietary inflammatory pattern (EDIP) score, we evaluated whether long-term proinflammatory diets were associated with survival among 1153 patients from 2 of the 5 cohorts. Cox proportional hazards regression was used to estimate hazard ratios for death with adjustment for potential confounders. All statistical tests were 2-sided.ResultsHigher prediagnostic levels of C-reactive protein, interleukin-6, and tumor necrosis factor-α receptor 2 were individually associated with reduced survival (Ptrend = .03, .01, and .04, respectively). Compared with patients with a combined inflammatory biomarker score of 0 (all 3 marker levels below medians), those with a score of 3 (all 3 marker levels above medians) had a hazard ratio for death of 1.57 (95% confidence interval = 1.16 to 2.12; Ptrend = .003), corresponding to median overall survival times of 8 vs 5 months. Patients consuming the most proinflammatory diets (EDIP quartile 4) in the prediagnostic period had a hazard ratio for death of 1.34 (95% confidence interval = 1.13 to 1.59; Ptrend = .01), compared with those consuming the least proinflammatory diets (EDIP quartile 1).ConclusionPrediagnostic levels of inflammatory biomarkers and long-term proinflammatory diets were inversely associated with pancreatic cancer survival.
Project description:Pancreatic cancer (PC) is an aggressive disease with high mortality rates, however, there is no blood test for early detection and diagnosis of this disease. Several research groups have reported on metabolomics based clinical investigations to identify biomarkers of PC, however there is a lack of a centralized metabolite biomarker repository that can be used for meta-analysis and biomarker validation. Furthermore, since the incidence of PC is associated with metabolic syndrome and Type 2 diabetes mellitus (T2DM), there is a need to uncouple these common metabolic dysregulations that may otherwise diminish the clinical utility of metabolomic biosignatures. Here, we attempted to externally replicate proposed metabolite biomarkers of PC reported by several other groups in an independent group of PC subjects. Our study design included a T2DM cohort that was used as a non-cancer control and a separate cohort diagnosed with colorectal cancer (CRC), as a cancer disease control to eliminate possible generic biomarkers of cancer. We used targeted mass spectrometry for quantitation of literature-curated metabolite markers and identified a biomarker panel that discriminates between normal controls (NC) and PC patients with high accuracy. Further evaluation of our model with CRC, however, showed a drop in specificity for the PC biomarker panel. Taken together, our study underscores the need for a more robust study design for cancer biomarker studies so as to maximize the translational value and clinical implementation.
Project description:BackgroundLeukocyte telomere length has been associated with risk of subsequent pancreatic cancer. Few prospective studies have evaluated the association of prediagnostic leukocyte telomere length with pancreatic cancer survival.MethodsWe prospectively examined the association of prediagnostic leukocyte telomere length with overall survival (OS) time among 423 participants diagnosed with pancreatic adenocarcinoma between 1984 and 2008 within the Health Professionals Follow-up Study, Nurses' Health Study, Physicians' Health Study, and Women's Health Initiative. We measured prediagnostic leukocyte telomere length in banked blood samples using quantitative PCR. Cox proportional hazards models were used to estimate HRs for OS with adjustment for potential confounders. We also evaluated 10 SNPs at the telomerase reverse transcriptase locus.ResultsShorter prediagnostic leukocyte telomere length was associated with reduced OS among patients with pancreatic cancer (P trend = 0.04). The multivariable-adjusted HR for OS comparing the lowest with highest quintiles of leukocyte telomere length was 1.39 (95% confidence interval, 1.01-1.93), corresponding to a 3-month difference in median OS time. In an analysis excluding cases with blood collected within 2 years of cancer diagnosis, the association was moderately stronger (HR, 1.55; 95% confidence interval, 1.09-2.21; comparing the lowest with highest quintiles; P trend = 0.01). No prognostic association or effect modification for the prognostic association of prediagnostic leukocyte telomere length was noted in relation to the studied SNPs.ConclusionsPrediagnostic leukocyte telomere length was associated with pancreatic cancer survival.ImpactPrediagnostic leukocyte telomere length can be a prognostic biomarker in pancreatic cancer.
Project description:PurposeAlthough vitamin D inhibits pancreatic cancer proliferation in laboratory models, the association of plasma 25-hydroxyvitamin D [25(OH)D] with patient survival is largely unexplored.Patients and methodsWe analyzed survival among 493 patients from five prospective US cohorts who were diagnosed with pancreatic cancer from 1984 to 2008. We estimated hazard ratios (HRs) for death by plasma level of 25(OH)D (insufficient, < 20 ng/mL; relative insufficiency, 20 to < 30 ng/mL; sufficient ≥ 30 ng/mL) by using Cox proportional hazards regression models adjusted for age, cohort, race and ethnicity, smoking, diagnosis year, stage, and blood collection month. We also evaluated 30 tagging single-nucleotide polymorphisms in the vitamin D receptor gene, requiring P < .002 (0.05 divided by 30 genotyped variants) for statistical significance.ResultsMean prediagnostic plasma level of 25(OH)D was 24.6 ng/mL, and 165 patients (33%) were vitamin D insufficient. Compared with patients with insufficient levels, multivariable-adjusted HRs for death were 0.79 (95% CI, 0.48 to 1.29) for patients with relative insufficiency and 0.66 (95% CI, 0.49 to 0.90) for patients with sufficient levels (P trend = .01). These results were unchanged after further adjustment for body mass index and history of diabetes (P trend = .02). The association was strongest among patients with blood collected within 5 years of diagnosis, with an HR of 0.58 (95% CI, 0.35 to 0.98) comparing patients with sufficient to patients with insufficient 25(OH)D levels. No single-nucleotide polymorphism at the vitamin D receptor gene met our corrected significance threshold of P < .002; rs7299460 was most strongly associated with survival (HR per minor allele, 0.80; 95% CI, 0.68 to 0.95; P = .01).ConclusionWe observed longer overall survival in patients with pancreatic cancer who had sufficient prediagnostic plasma levels of 25(OH)D.
Project description:BackgroundExtracellular vesicle (EV) biomarkers have promising diagnosis and screening capacity for several cancers, but the diagnostic value for pancreatic cancer (PC) is controversial. The aim of our study was to review the diagnostic performance of EV biomarkers for PC.MethodsWe performed a systematic review of PubMed, Medline, and Web Of Science databases from inception to 18 Feb 2022. We identified studies reporting the diagnostic performance of EV biomarkers for PC and summarized the information of sensitivity, specificity, area under the curve (AUC), or receiver operator characteristic (ROC) curve) in according to a pre-designed data collection form. Pooled sensitivity and specificity was calculated using a random-effect model.ResultsWe identified 39 studies, including 2037 PC patients and 1632 noncancerous, seven of which were conducted independent validation tests. Seventeen studies emphasized on EV RNAs, sixteen on EV proteins, and sixteen on biomarker panels. MiR-10b, miR-21, and GPC1 were the most frequently reported RNA and protein for PC diagnosis. For individual RNAs and proteins, the pooled sensitivity and specificity were 79% (95% CI: 77-81%) and 87% (95% CI: 85-89%), 72% (95% CI: 69-74%) and 77% (95% CI: 74-80%), respectively. the pooled sensitivity and specificity of EV RNA combined with protein panels were 84% (95% CI: 81-86%) and 89% (95% CI: 86-91%), respectively. Surprisingly, for early stage (stage I and II) PC EV biomarkers showed excellent diagnostic performance with the sensitivity of 90% (95% CI: 87-93%) and the specificity of 94% (95% CI: 92-95%). Both in sensitivity and subgroup analyses, we did not observe notable difference in pooled sensitivity and specificity. Studies might be limited by the isolation and detection techniques of EVs to a certain extent.ConclusionsEV biomarkers showed appealing diagnostic preference for PC, especially for early stage PC. Solving the deficiency of technologies of isolation and detection EVs has important implications for application these novel noninvasive biomarkers in clinical practice.
Project description:BackgroundNovel blood-based protein biomarkers may be of value for efficient, accurate, and non-invasive diagnosis of pancreatic cancer. This study assesses the diagnostic accuracy of newly recognized blood-based protein biomarkers for detecting pancreatic cancer, and investigates their added value to CA19-9, the common blood-based biomarker in clinical use for pancreatic cancer.MethodsPubMed, Embase, Web of Science, and the Wiley/Cochrane Library were systematically searched from inception until June 2022. A meta-analysis of aggregate and individual participant data was conducted using frequentist and Bayesian hierarchical random-effects models. The added clinical utility of protein biomarkers was investigated using bootstrap bias-corrected decision curve analyses.FindingsAggregate data from 28 primary studies (6127 participants) were included, of which 8 studies (1790 participants) provided individual participant data. CA19-9 was significantly more accurate than MIC-1 for distinguishing pancreatic cancer from benign disease (AUC, 0.83 vs 0.74; relative diagnostic odds ratio [rDOR], 2.10 [95% CI, 0.98-4.48]; p = 0.002), THBS2 (AUC, 0.87 vs 0.69; rDOR, 4.53 [2.16-9.39]; p < 0.0001), TIMP-1 (AUC, 0.91 vs 0.70; rDOR, 8.00 [3.81-16.9]; p < 0.0001), OPN (AUC, 0.89 vs 0.74; rDOR, 4.22 [1.13-15.6]; p < 0.0001), ICAM-1 (AUC, 0.91 vs 0.68; rDOR 9.30 [0.87-99.5]; p < 0.0001), and IGFBP2 (AUC, 0.91 vs 0.68; rDOR, 4.48 [0.78-24.3]; p < 0.0001). The addition of these novel protein biomarkers to CA19-9 did not significantly improve the AUC, and resulted in minor increases or limited decreases in clinical utility.InterpretationNovel protein biomarkers have moderate diagnostic accuracy, do not outperform CA19-9 in differentiating pancreatic cancer from benign disease, and show limited added clinical value to CA19-9. We propose recommendations to aid the development of minimally invasive diagnostic tests with sufficient clinical utility to improve the management of patients with suspected pancreatic cancer.FundingBennink Foundation, Dutch Cancer Foundation (KWF Kankerbestrijding), and AIRC.
Project description:The prognosis of pancreatic cancer is still very poor, how to detect pancreatic cancer from high-risk group in an early stage is essential for improving its long-time survival. Therefore, the purpose of this study was to explore specific biomarkers that can differentiate pancreatic cancer-associated diabetes from type-2 diabetes for the early detection of pancreatic cancer. In the current study, we used global gene transcription analysis with affymetrix gene chip to identify genes specifically expressed in pancreatic cancer-associated diabetes mellitus from peripheral blood samples in stead of from tissue samples. 32 peripheral blood samples were collected for microarray experiments to find differentially expressed genes specific for pancreatic cancer associated diabetes, which included 8 patients diagnosed as pancreatic cancer with diabetes, 8 patients of pancreatic cancer without diabetes, 8 patients with diabetes mellitus>5years and 8 healthy controls. the comparision was done between pancreatic cancer with diabetes vs normal, pancreatic cancer vs normal and diabetes vs normal to identify a small group of genes that differently expressed in the pancreatic cancer with diabetes group.
Project description:The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a five year survival rate of less than 5%. Improved screening for earlier diagnosis, through the detection of diagnostic and prognostic biomarkers provides the best hope of increasing the rate of curatively resectable carcinomas. Though many serum markers have been reported to be elevated in patients with PC, so far, most of these markers have not been implemented into clinical routine due to low sensitivity or specificity. In this study, we have identified genes that are significantly upregulated in PC, through a meta-analysis of large number of microarray datasets. We demonstrate that the biological functions ascribed to these genes are clearly associated with PC and metastasis, and that that these genes exhibit a strong link to pathways involved with inflammation and the immune response. This investigation has yielded new targets for cancer genes, and potential biomarkers for pancreatic cancer. The candidate list of cancer genes includes protein kinase genes, new members of gene families currently associated with PC, as well as genes not previously linked to PC. In this study, we are also able to move towards developing a signature for hypomethylated genes, which could be useful for early detection of PC. We also show that the significantly upregulated 800+ genes in our analysis can serve as an enriched pool for tissue and serum protein biomarkers in pancreatic cancer.
Project description:BackgroundPancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with few known risk factors and biomarkers. Several blood protein biomarkers have been linked to PDAC in previous studies, but these studies have assessed only a limited number of biomarkers, usually in small samples. In this study, we evaluated associations of circulating protein levels and PDAC risk using genetic instruments.MethodsTo identify novel circulating protein biomarkers of PDAC, we studied 8,280 cases and 6,728 controls of European descent from the Pancreatic Cancer Cohort Consortium and the Pancreatic Cancer Case-Control Consortium, using genetic instruments of protein quantitative trait loci.ResultsWe observed associations between predicted concentrations of 38 proteins and PDAC risk at an FDR of < 0.05, including 23 of those proteins that showed an association even after Bonferroni correction. These include the protein encoded by ABO, which has been implicated as a potential target gene of PDAC risk variant. Eight of the identified proteins (LMA2L, TM11D, IP-10, ADH1B, STOM, TENC1, DOCK9, and CRBB2) were associated with PDAC risk after adjusting for previously reported PDAC risk variants (OR ranged from 0.79 to 1.52). Pathway enrichment analysis showed that the encoding genes for implicated proteins were significantly enriched in cancer-related pathways, such as STAT3 and IL15 production.ConclusionsWe identified 38 candidates of protein biomarkers for PDAC risk.ImpactThis study identifies novel protein biomarker candidates for PDAC, which if validated by additional studies, may contribute to the etiologic understanding of PDAC development.