Project description:Shift work is commonplace in modern societies, and shift workers are predisposed to the development of numerous chronic diseases. Disruptions to the circadian systems of shift workers are considered important contributors to the biological dysfunction these people frequently experience. Because of this, understanding how to alter shift work and zeitgeber (time cue) schedules to enhance circadian system function is likely to be key to improving the health of shift workers. While light exposure is the most important zeitgeber for the central clock in the circadian system, diet and exercise are plausible zeitgebers for circadian clocks in many tissues. We know little about how different zeitgebers interact and how to tailor zeitgeber schedules to the needs of individuals; however, in this review we share some guidelines to help shift workers adapt to their work schedules based on our current understanding of circadian biology. We focus in particular on the importance of diet timing and composition. Going forward, developments in phenotyping and "envirotyping" methods may be important to understanding how to optimise shift work. Non-invasive, multimodal, comprehensive phenotyping using multiple sources of time-stamped data may yield insights that are critical to the care of shift workers. Finally, the impact of these advances will be reduced without modifications to work environments to make it easier for shift workers to engage in behaviours conducive to their health. Integrating findings from behavioural science and ergonomics may help shift workers make healthier choices, thereby amplifying the beneficial effects of improved lifestyle prescriptions for these people.
Project description:In recent years, there has been a significant expansion in the development and use of multi-modal sensors and technologies to monitor physical activity, sleep and circadian rhythms. These developments make accurate sleep monitoring at scale a possibility for the first time. Vast amounts of multi-sensor data are being generated with potential applications ranging from large-scale epidemiological research linking sleep patterns to disease, to wellness applications, including the sleep coaching of individuals with chronic conditions. However, in order to realise the full potential of these technologies for individuals, medicine and research, several significant challenges must be overcome. There are important outstanding questions regarding performance evaluation, as well as data storage, curation, processing, integration, modelling and interpretation. Here, we leverage expertise across neuroscience, clinical medicine, bioengineering, electrical engineering, epidemiology, computer science, mHealth and human-computer interaction to discuss the digitisation of sleep from a inter-disciplinary perspective. We introduce the state-of-the-art in sleep-monitoring technologies, and discuss the opportunities and challenges from data acquisition to the eventual application of insights in clinical and consumer settings. Further, we explore the strengths and limitations of current and emerging sensing methods with a particular focus on novel data-driven technologies, such as Artificial Intelligence.
Project description:Cardiothoracic surgical critical care medicine (CT-CCM) is a medical discipline centered on the perioperative care of diverse groups of patients. With an aging demographic and an increase in burden of chronic diseases the utilization of cardiothoracic surgical critical care units is likely to escalate in the coming decades. Given these projections, it is important to assess the state of cardiothoracic surgical intensive care, to develop goals and objectives for the future, and to identify knowledge gaps in need of scientific inquiry. This two-part review concentrates on CT-CCM as its own subspeciality of critical care and cardiothoracic surgery and provides aspirational goals for its practitioners and scientists. In part one, a list of guiding principles and a call-to-action agenda geared towards growth and promotion of CT-CCM are offered. In part two, an evaluation of selected scientific data is performed, identifying gaps in CT-CCM knowledge, and recommending direction to future scientific endeavors.
Project description:The term Blue Carbon (BC) was first coined a decade ago to describe the disproportionately large contribution of coastal vegetated ecosystems to global carbon sequestration. The role of BC in climate change mitigation and adaptation has now reached international prominence. To help prioritise future research, we assembled leading experts in the field to agree upon the top-ten pending questions in BC science. Understanding how climate change affects carbon accumulation in mature BC ecosystems and during their restoration was a high priority. Controversial questions included the role of carbonate and macroalgae in BC cycling, and the degree to which greenhouse gases are released following disturbance of BC ecosystems. Scientists seek improved precision of the extent of BC ecosystems; techniques to determine BC provenance; understanding of the factors that influence sequestration in BC ecosystems, with the corresponding value of BC; and the management actions that are effective in enhancing this value. Overall this overview provides a comprehensive road map for the coming decades on future research in BC science.
Project description:Bioinformatics is now intrinsic to life science research, but the past decade has witnessed a continuing deficiency in this essential expertise. Basic data stewardship is still taught relatively rarely in life science education programmes, creating a chasm between theory and practice, and fuelling demand for bioinformatics training across all educational levels and career roles. Concerned by this, surveys have been conducted in recent years to monitor bioinformatics and computational training needs worldwide. This article briefly reviews the principal findings of a number of these studies. We see that there is still a strong appetite for short courses to improve expertise and confidence in data analysis and interpretation; strikingly, however, the most urgent appeal is for bioinformatics to be woven into the fabric of life science degree programmes. Satisfying the relentless training needs of current and future generations of life scientists will require a concerted response from stakeholders across the globe, who need to deliver sustainable solutions capable of both transforming education curricula and cultivating a new cadre of trainer scientists.
Project description:The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of genomes).
Project description:Though a relatively young discipline, translational bioinformatics (TBI) has become a key component of biomedical research in the era of precision medicine. Development of high-throughput technologies and electronic health records has caused a paradigm shift in both healthcare and biomedical research. Novel tools and methods are required to convert increasingly voluminous datasets into information and actionable knowledge. This review provides a definition and contextualization of the term TBI, describes the discipline's brief history and past accomplishments, as well as current foci, and concludes with predictions of future directions in the field.
Project description:In 2000 the United States launched the National Nanotechnology Initiative and, along with it, a well-defined set of goals for nanomedicine. This Perspective looks back at the progress made toward those goals, within the context of the changing landscape in biomedicine that has occurred over the past 15 years, and considers advances that are likely to occur during the next decade. In particular, nanotechnologies for health-related genomics and single-cell biology, inorganic and organic nanoparticles for biomedicine, and wearable nanotechnologies for wellness monitoring are briefly covered.
Project description:The concept of Open Bibliography in science, technology and medicine (STM) is introduced as a combination of Open Source tools, Open specifications and Open bibliographic data. An Openly searchable and navigable network of bibliographic information and associated knowledge representations, a Bibliographic Knowledge Network, across all branches of Science, Technology and Medicine, has been designed and initiated. For this large scale endeavour, the engagement and cooperation of the multiple stakeholders in STM publishing - authors, librarians, publishers and administrators - is sought.
Project description:The estimated cost of acute injuries in college-level sport in the USA is ∼1.5 billion dollars per year, without taking into account the cost of follow up rehabilitation. In addition to this huge financial burden, without appropriate diagnosis and relevant interventions, sport injuries may be career-ending for some athletes. With a growing number of females participating in contact based and pivoting sports, middle aged individuals returning to sport and natural injuries of ageing all increasing, such costs and negative implications for quality of life will expand. For those injuries, which cannot be predicted and prevented, there is a real need, to optimise repair, recovery and function, post-injury in the sporting and clinical worlds. The 21st century has seen a rapid growth in the arena of regenerative medicine for sporting injuries, in a bid to progress recovery and to facilitate return to sport. Such interventions harness knowledge relating to stem cells as a potential for injury repair. While the field is rapidly growing, consideration beyond the stem cells, to the factors they secrete, should be considered in the development of effective, affordable treatments.