Project description:Metastasis contributes to treatment failure in nasopharyngeal carcinoma (NPC) patients. Our study aimed at elucidating the role of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) in NPC metastasis and the underlying mechanism involved. IGF2BP3 expression in NPC was determined by bioinformatics, quantitative polymerase chain reaction and immunohistochemistry analyses. The biological function of IGF2BP3 was investigated by using in vitro and in vivo studies. In this study, IGF2BP3 mRNA and protein levels were elevated in NPC tissues. In addition, IGF2BP3 exerted an oncogenic role by promoting epithelial-mesenchymal transition (EMT), thereby inducing NPC cell migration and invasion. Further studies revealed that IGF2BP3 regulated the expression of key regulators of EMT by activating AKT/mTOR signalling, thus stimulating NPC cell migration and invasion. Remarkably, targeting IGF2BP3 delayed NPC metastasis through attenuating p-AKT and vimentin expression and inducing E-cadherin expression in vivo. Moreover, IGF2BP3 protein levels positively correlated with distant metastasis after initial treatment. Importantly, IGF2BP3 expression served as an independent prognostic factor in predicting the overall survival and distant metastasis-free survival of NPC patients. This work identifies IGF2BP3 as a novel prognostic marker and a new target for NPC treatment.
Project description:Foxj2, a novel member of Forkhead box family, has been reported to play an important role in tumorigenesis, progression, and metastasis of certain cancers. However, the expression status and effects of Foxj2 on nasopharyngeal carcinoma (NPC) progression and metastasis remain debated. In this study, we first examined the expression of Foxj2 in NPC by immunohistochemistry and Western blotting analysis. We confirmed significantly elevated expression of Foxj2 in NPC tissues and cell lines. Next, the relationships between Foxj2 expression levels and the clinicopathological factors were investigated. Its expression level correlated with T-classification (P=0.026), distant metastasis (P=0.004), and clinical stage (P=0.029). In addition, high expression of Foxj2 was associated with poor prognosis in NPC patients. The effects of Foxj2 on cell proliferation and migration were explored by RNA interference (RNAi) with CCK-8 assay, cell cycle analyses, wound healing, and transwell assay. In conclusion, our data indicate that Foxj2 upregulation promotes the progression and migration of NPC. It makes Foxj2 serve as a potential therapeutic target for the treatment of NPC.
Project description:The expression levels of CTLA-4 and CD28 were analyzed in 191 nasopharyngeal carcinoma (NPC) patients diagnosed and treated at our hospital between January 2010 and November 2011. The 3-year overall survival (OS) rate (91.4% vs. 81.2%,p = 0.043), failure-free survival (FFS) rate (82.8% vs. 68.0%, p = 0.009) and distant failure-free survival (D-FFS) rate (85.8% vs. 72.3%, p = 0.006) in the low tumor CTLA-4 expression group was higher than in the high tumor CTLA-4 group. There were no differences between the locoregional failure-free survival (LR-FFS) rates in the high and low tumor CTLA-4 expression groups. Moreover, no differences in the OS, FFS, D-FFS, or LR-FFS were observed between the groups with high and low lymphocyte CTLA-4 levels, high and low tumor CD28 levels, or high and low lymphocyte CD28 levels. Cox regression analysis confirmed the prognostic value of tumor CTLA-4 expression, particularly for D-FFS, in NPC patients (p = 0.044). NPC patients with high tumor CTLA-4 expression had a poorer prognosis than those with low expression.
Project description:BACKGROUND: Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene. This study aimed to investigate the impact of BRMS1 on metastasis in nasopharyngeal carcinoma (NPC) and to evaluate the prognostic significance of BRMS1 in NPC patients. METHODS: BRMS1 expression was examined in NPC cell lines using quantitative reverse transcription-polymerase chain reaction and Western blotting. NPC cells stably expressing BRMS1 were used to perform wound healing and invasion assays in vitro and a murine xenograft assay in vivo. Immunohistochemical staining was performed in 274 paraffin-embedded NPC specimens divided into a training set (n = 120) and a testing set (n = 154). RESULTS: BRMS1 expression was down-regulated in NPC cell lines. Overexpression of BRMS1 significantly reversed the metastatic phenotype of NPC cells in vitro and in vivo. Importantly, low BRMS1 expression was associated with poor distant metastasis-free survival (DMFS, P < 0.001) and poor overall survival (OS, P < 0.001) in the training set; these results were validated in the testing set and overall patient population. Cox regression analysis demonstrated that low BRMS1 expression was an independent prognostic factor for DMFS and OS in NPC. CONCLUSIONS: Low expression of the metastasis suppressor BRMS1 may be an independent prognostic factor for poor prognosis in NPC patients.
Project description:BackgroundHuman MTP18 (mitochondrial protein 18 kDa) is a novel nuclear-encoded mitochondrial membrane protein that is involved in controlling mitochondrial fission. Our bioinformatic analysis of TCGA data revealed an aberrant overexpression of MTP18 in hepatocellular carcinoma (HCC). We analyzed its biological effects and prognostic significance in this malignancy.MethodsMTP18 expression was evaluated by qRT-PCR and western blot analysis in 20 paired tumor and peritumor tissues. Clinical impact of MTP18 overexpression was assessed in 156 patients with HCC. The effects of MTP18 knockdown or overexpression on cell growth and metastasis were determined by cell proliferation, colony formation, cell cycle, apoptosis, migration, and invasion assays. Furthermore, the underlying molecular mechanisms by which MTP18 overexpression promoted HCC cell growth and metastasis were explored.ResultsMTP18 was commonly overexpressed in HCC tissues mainly due to the downregulation of miR-125b, which significantly contributed to poor prognosis of HCC patients. Functional experiments revealed that MTP18 promoted both the growth and metastasis of HCC cells by inducing the progression of cell cycle, epithelial to mesenchymal transition (EMT) and production of MMP-9, and suppressing cell apoptosis. Mechanistically, increased mitochondrial fission and subsequent ROS production was found to be involved in the promotion of growth and metastasis by MTP18 in HCC cells.ConclusionsMTP18 plays a pivotal oncogenic role in hepatocellular carcinogenesis; its overexpression may serve as a novel prognostic factor and a therapeutic target in HCC.
Project description:Despite the substantial data supporting the oncogenic role of Ack1, the predictive value and biologic role of Ack1 in hepatocellular carcinoma (HCC) metastasis remains unknown. In this study, both correlations of Ack1 expression with prognosis of HCC, and the role of Ack1 in metastasis of HCC were investigated in vitro and in vivo. Our results showed that Ack1 was overexpressed in human HCC tissues and cell lines. High Ack1 expression was associated with HCC metastasis and determined as a significant and independent prognostic factor for HCC after liver resection. Ack1 promoted HCC invasion and metastasis in vitro and in vivo. Mechanistically, we confirmed that Ack1 enhanced invasion and metastasis of HCC via EMT by mediating AKT phosphorylation. In conclusion, our study shows Ack1 is a novel prognostic biomarker for HCC and promotes metastasis of HCC via EMT by activating AKT signaling.
Project description:Semaphorins were discovered as guidance signals that mediate neural development. Recent studies suggest that semaphorin 3A (Sema3A), a member of the semaphorin family, is involved in the development of several cancers. This study aimed to analyze the association of Sema3A with the clinical features of nasopharyngeal carcinoma (NPC), an Epstein-Barr virus-associated carcinoma, and the Epstein-Barr virus primary oncogene latent membrane protein 1 (LMP1). The expression of Sema3A and LMP1 was immunohistochemically examined in the 35 NPC specimens. The mean expression scores for Sema3A and LMP1 were 20.8% ± 14.5% and 13.9% ± 14.8%, respectively. The expression of Sema3A significantly correlated with that of LMP1 (r = 0.41, p = 0.014). In addition, the Sema3A high cohort showed significantly poorer prognosis than the Sema3A low cohort. Sema3A expression was higher in the LMP1-positive KH-1 and KR-4 cell lines compared to the LMP1-negative HeLa cells. Overexpression of LMP1 in the LMP1-negative AdAH cell line upregulated Sema3A expression, both at the transcriptional and translational level. Finally, Sema3A expression was associated with poor prognosis in patients with NPC. Our data suggest that LMP1 induces the expression of Sema3A, which may promote tumor progression in NPC.
Project description:PurposeTo examine the usefulness of various receptor tyrosine kinase expressions as prognostic markers and therapeutic targets in muscle invasive urothelial cancer (UC) patients.Materials and methodsWe retrospectively analyzed the data of 98 patients with muscle invasive UC who underwent radical cystectomy between 2005 and 2010 in Yonsei Cancer Center. Using formalin fixed paraffin embedded tissues of primary tumors, immunohistochemical staining was done for human epidermal growth factor receptor 2 (HER2), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 3 (FGFR3).ResultsThere were 41 (41.8%), 44 (44.9%), and 14 (14.2%) patients who have over-expressed HER2, FGFR1, and FGFR3, respectively. In univariate analysis, significantly shorter median time to recurrence (TTR) (12.9 months vs. 49.0 months; p=0.008) and overall survival (OS) (22.3 months vs. 52.7 months; p=0.006) was found in patients with FGFR1 overexpression. By contrast, there was no difference in TTR or OS according to the HER2 and FGFR3 expression status. FGFR1 remained as a significant prognostic factor for OS with hazard ratio of 2.23 (95% confidence interval: 1.27-3.90, p=0.006) in multivariate analysis.ConclusionOur result showed that FGFR1 expression, but not FGFR3, is an adverse prognostic factor in muscle invasive UC patients after radical cystectomy. FGFR1 might be feasible for prognosis prediction and a potential therapeutic target after thorough validation in muscle invasive UC.
Project description:BackgroundHepatocellular carcinoma (HCC) metastasis and recurrence lead to therapy failure, which are closely associated with the proteome. However, the role of post-translational modification (PTM) in HCC, especially for the recently discovered lysine crotonylation (Kcr), is elusive.ResultsWe investigated the correlation between crotonylation and HCC in 100 tumor tissues and performed stable isotope labeling by amino acids and liquid chromatography tandem mass spectrometry in HCC cells, and we found that crotonylation was positively correlated with HCC metastasis, and higher crotonylation in HCC cells facilitated cell invasiveness. Through bioinformatic analysis, we found that the crotonylated protein SEPT2 was significantly hypercrotonylated in highly invasive cells, while the decrotonylated mutation of SEPT2-K74 impaired SEPT2 GTPase activity and inhibited HCC metastasis in vitro and in vivo. Mechanistically, SIRT2 decrotonylated SEPT2, and P85α was found to be the downstream effector of SEPT2. Moreover, we identified that SEPT2-K74cr was correlated with poor prognosis and recurrence in HCC patients, thus indicating its clinical potential as an independent prognostic factor.ConclusionsWe revealed the role of nonhistone protein crotonylation in regulating HCC metastasis and invasion. Crotonylation facilitated cell invasion through the crotonylated SEPT2-K74-P85α-AKT pathway. High SEPT2-K74 crotonylation predicted poor prognosis and a high recurrence rate in HCC patients. Our study revealed a novel role of crotonylation in promoting HCC metastasis.
Project description:Purpose:Little is known about the clinical significance of CD47 expression and its association with Epstein-Barr virus (EBV) infection in patients with nasopharyngeal carcinoma (NPC). The aim of this study was to clarify the prognostic value and role of CD47 in EBV-associated NPC. Materials and Methods:Sixty-six cases of non-metastatic NPC were retrospectively reviewed. Tissues were collected for immunohistochemical staining of CD47 and the EBV-encoded oncoprotein latent membrane protein 1 (LMP1). Western blotting and quantitative real-time PCR were performed to determine the CD47 and LMP1 levels in common human NPC cell lines. Additionally, CD47 and LMP1 expression in a constructed EBV-positive human NPC cell (CNE-2-EBV+) and a stable cell line transfected with LMP1 plasmid (CNE-2-LMP1) was assessed. Next, we used Western blotting to assess the decrease in CD47 expression on CNE-2-LMP1 cells after transfecting them with small interfering RNA (siRNA)-targeting LMP1. Results:In NPC patients, CD47 overexpression was significantly associated with disease recurrence (P=0.010), leading to poorer disease-free survival (DFS; P=0.002) and overall survival (P=0.021). Multivariate Cox proportional hazards models demonstrated that CD47 (HR=5.452, P=0.016) was an independent prognostic factor of DFS. Moreover, CD47 expression was associated with plasma EBV-DNA copy number and LMP1 tissue expression. Among the human NPC cell lines, CD47 and LMP1 expression was notably higher in the EBV-positive C666-1 cell line than in the EBV-negative cell lines. Furthermore, EBV infection upregulated CD47 expression via LMP1-mediated pathways in human NPC cells. Conclusion:This study indicated that CD47 is related to EBV infection in NPC patients, and it is a feasible biomarker.