Project description:Premature ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 (secondary amenorrhea) with hypergonadotropism and hypoestrogenism. Premature ovarian insufficiency has few known genetic causes but in familial cases a genetic link is often suspected. A large consanguineous family with three female affected with POI was investigated. All samples including 3 affected and 5 unaffecd underwent whole genome SNP genotyping using Affymetric Axiom_GW_Hu_SNP array. Linkage analysis was carried out using HomozygosityMapper and Allegro softwares.Linkage analysis mapped the disease phenotype to long arm of chromosome 20. Sequence data analysis of potential candidate genes failed to detect any pathogenic variant. Affymetrix SNP arrays were performed according to the manufacturer's directions on DNA extracted from peripheral blood samples. DNA of eight individuals including three affected subjects was used for homozygosity mapping. Genotyping was performed using the Affymetrix Axiom_GW_Hu_SNP array. Briefly, 250 ng genomic DNA was digested with Digestion Master Mix containing 2 µl NE buffer 2 (10X), 0.5 µl BSA (100X; 10 mg/ml) and 1 µl Nsp1. Digested DNA sample was ligated to Nsp1 adaptor using T4 DNA ligase and amplified by 2 µl of TITANIUM Taq DNA polymerase (50X) and 100 µM PCR primer. PCR products were purified on a Clean-Up plate (Clontech Lab, Madison, USA) and eluted by RB buffer. Purified PCR products were fragmented using Fragmentation Reagent (0.05U/µl DNase 1) for 35 minutes at 37°C followed by labeling of fragmented samples with Labeling Master Mix (30 mM GeneChip DNA Labeling Reagent, 30 U/µl Terminal Deoxynucleotidyl Transferase) for 4 hours at 37°C. Labeled samples were hybridized to Axiom_GW_Hu_SNP array by mixing the sample with Hybridization Master Mix, denatured on thermoblock and loaded on to Array. Array was then placed in a hybridization oven (GeneChip Hybridization Oven 640, USA) for 16-18 hours. After hybridization, array was washed and stained on an automated Fluidic Station 450 followed by scanning on GeneChip Scanner 3000 7G using GeneChip Operating Software (GCOS).
Project description:Premature ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 (secondary amenorrhea) with hypergonadotropism and hypoestrogenism. Premature ovarian insufficiency has few known genetic causes but in familial cases a genetic link is often suspected. A large consanguineous family with three female affected with POI was investigated. All samples including 3 affected and 5 unaffecd underwent whole genome SNP genotyping using Affymetric Axiom_GW_Hu_SNP array. Linkage analysis was carried out using HomozygosityMapper and Allegro softwares.Linkage analysis mapped the disease phenotype to long arm of chromosome 20. Sequence data analysis of potential candidate genes failed to detect any pathogenic variant.
Project description:Human placental mesenchymal stem cells (hPMSCs) have the ability to release cytokines and to differentiate into the three germ layers. To date, the relevance of hPMSCs for the treatment of premature ovarian insufficiency (POI) disease through the regulation of oxidative stress is still unclear. Therefore, to evaluate the therapeutic efficiency and investigate the mechanism of hPMSCs, we generated a mouse model of POI and collected human ovarian granule cells (hGCs) from patients with POI. hPMSCs displayed therapeutic effects on POI ovarian function, including recovered follicular numbers and increased expression of oocyte markers. Furthermore, secretion of the cytokine EGF (epidermal growth factor) was higher from hPMSCs than it was from other cells. FACS and Western blot analyses showed that EGF elevated the proliferation and reduced the apoptosis in hGCs. hPMSCs and EGF inhibited oxidative stress levels. Protein assays demonstrated that EGF suppressed oxidative stress by dose-dependently upregulating the expression of the NRF2/HO-1 pathway, and it inhibited the apoptosis by regulating the PTEN/PI3K/AKT pathway. These findings provide an experimental foundation for hPMSCs in improving ovarian function through the secretion of EGF. The mechanism of action of EGF is related to protection from oxidative stress by activation of the NRF2/HO-1.
Project description:BackgroundPremature ovarian insufficiency (POI) patients are predisposed to metabolic disturbances, including in lipid metabolism and glucose metabolism, and metabolic disorders appear to be a prerequisite of the typical long-term complications of POI, such as cardiovascular diseases or osteoporosis. However, the metabolic changes underlying the development of POI and its subsequent complications are incompletely understood, and there are few studies characterizing the disturbed metabolome in POI patients. The aim of this study was to characterize the plasma metabolome in POI by using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) metabolomics and to evaluate whether these disturbances identified in the plasma metabolome relate to ovarian reserve and have diagnostic value in POI.MethodsThis observational study recruited 30 POI patients and 30 age- and body mass index (BMI)-matched controls in the Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, from January 2018 to October 2020. Fasting venous blood was collected at 9:00 am on days 2-4 of the menstrual cycle and centrifuged for analysis. An untargeted quantitative metabolomic analysis was performed using UHPLC-MS/MS.ResultsOur study identified 48 upregulated and 21 downregulated positive metabolites, and 13 upregulated and 48 downregulated negative metabolites in the plasma of POI patients. The differentially regulated metabolites were involved in pathways such as caffeine metabolism and ubiquinone and other terpenoid-quinone biosynthesis. Six metabolites with an AUC value > 0.8, including arachidonoyl amide, 3-hydroxy-3-methylbutanoic acid, dihexyl nonanedioate, 18-HETE, cystine, and PG (16:0/18:1), were correlated with ovarian reserve and thus have the potential to be diagnostic biomarkers of POI.ConclusionThis UHPLC-MS/MS untargeted metabolomics study revealed differentially expressed metabolites in the plasma of patients with POI. The differential metabolites may not only be involved in the aetiology of POI but also contribute to its major complications. These findings offer a panoramic view of the plasma metabolite changes caused by POI, which may provide useful diagnostic and therapeutic clues for POI disease.
Project description:BackgroundPrimary ovarian insufficiency (POI) is a critical cause of infertility and is increasingly recognized as a complex metabolic disorder. Dietary factors may influence the risk of POI, but causal relationships remain unclear.MethodsWe conducted an MR study using genetic instrumental variables for 83 dietary preferences from the UK Biobank, with the Inverse Variance Weighted method as the primary analysis.ResultsConsumption of butter and full-fat dairy products was strongly associated with an increased risk of primary ovarian insufficiency (POI). Women who consumed butter had nearly ten times the risk of developing POI (OR = 9.54, p = 0.048), while full-cream milk was associated with an even greater risk (OR = 29.22, p = 0.018). Interestingly, semi-skimmed milk, despite its lower fat content, also showed a significant positive association with POI (OR > 100, p = 0.008). In contrast, dietary patterns including oily fish and pork were protective against POI. Oily fish, rich in omega-3 fatty acids, was linked to a 82% reduced risk of POI (OR = 0.18, p = 0.008), and pork consumption also showed a protective effect (OR = 0.13, p = 0.041). Additionally, women who did not consume eggs had a significantly lower risk of POI (OR < 0.001, p = 0.044).ConclusionThis study demonstrates that high-fat dairy products may increase the risk of POI, while oily fish and pork consumption could offer protective effects. These findings providing a foundation for future clinical and public health strategies targeting reproductive health.
Project description:MicroRNAs (miRNAs) post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to investigate whether polymorphisms in miR-938 are associated with the risk of primary ovarian insufficiency (POI) and POI-related target gene regulation. We identified the miR-938G>A polymorphisms within the seed sequence of mature miRNA and aligned the seed sequence with the 3' untranslated region (UTR) of the gonadotropin-releasing hormone receptor (GnRHR) mRNA, a miR-938 target gene. We found that the binding of miR-938 to the 3'-UTR of GnRHR mRNA was significantly different between normal and variant alleles. Our data suggests that the dysregulation of miR-938G>A influences the binding to GnRHR and that miR-938G>A polymorphisms might contribute to regulation of POI-related target genes.
Project description:Premature ovarian insufficiency is a multi-factor gynecological disease that has become a major global health problem. In recent years, several trials have explored the treatment of premature ovarian insufficiency using Chinese herbal medicine and acupuncture, but the efficacy and safety of this combination remains controversial. This systematic review and meta-analysis aimed to comprehensively evaluate the efficacy and safety of combining Chinese herbal medicine with acupuncture to treat premature ovarian insufficiency. From eight different databases, we retrieved randomized controlled trials wherein Chinese herbal medicine and acupuncture had been compared with western medicine in the treatment of premature ovarian insufficiency. The bias risk assessment stipulated by the Cochrane Collaboration's tool was utilized to evaluate the quality of the chosen randomized controlled trials. This meta-analysis was executed with the help of Review Manager 5.3 and Stata 10.0. The quality of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation framework. A total of 10 randomized controlled trials involving 594 premature ovarian insufficiency patients were included in the analysis. Compared with western medicine, co-treatment with acupuncture and Chinese herbal medicine exhibited a significantly higher total effective rate (relative risk: 1.21; 95% confidence interval: 1.12-1.31; P < 0.01, I2 = 0%), but lower levels of luteinizing hormone (standardized mean difference: -0.57; 95% confidence interval: -1.06, -0.08; P < 0.05, I2 = 80%), follicle-stimulating hormone, and Kupperman index score. Moreover, the combined intervention increased estradiol level in the serum. Overall, the data demonstrate that acupuncture plus Chinese herbal medicine is an efficacious and safe treatment option for POI patients. These findings must be verified by conducting large-scale, multicenter, high-quality, and long-term randomized controlled trials.
Project description:Premature ovarian insufficiency (POI) is a major cause of female infertility due to early loss of ovarian function. POI is a heterogeneous condition, and its molecular etiology is unclear. To identify genetic variants associated with POI, here we performed whole-exome sequencing in a cohort of 1,030 patients with POI. We detected 195 pathogenic/likely pathogenic variants in 59 known POI-causative genes, accounting for 193 (18.7%) cases. Association analyses comparing the POI cohort with a control cohort of 5,000 individuals without POI identified 20 further POI-associated genes with a significantly higher burden of loss-of-function variants. Functional annotations of these novel 20 genes indicated their involvement in ovarian development and function, including gonadogenesis (LGR4 and PRDM1), meiosis (CPEB1, KASH5, MCMDC2, MEIOSIN, NUP43, RFWD3, SHOC1, SLX4 and STRA8) and folliculogenesis and ovulation (ALOX12, BMP6, H1-8, HMMR, HSD17B1, MST1R, PPM1B, ZAR1 and ZP3). Cumulatively, pathogenic and likely pathogenic variants in known POI-causative and novel POI-associated genes contributed to 242 (23.5%) cases. Further genotype-phenotype correlation analyses indicated that genetic contribution was higher in cases with primary amenorrhea compared to that in cases with secondary amenorrhea. This study expands understanding of the genetic landscape underlying POI and presents insights that have the potential to improve the utility of diagnostic genetic screenings.