Project description:Gene expression is finely regulated at the post-transcriptional level. Features of the untranslated regions of mRNAs that control their translation, degradation and localization include stem-loop structures, upstream initiation codons and open reading frames, internal ribosome entry sites and various cis-acting elements that are bound by RNA-binding proteins.
Project description:AU-rich elements (AREs) in the 3'-UTR of unstable transcripts play a vital role in the regulation of many inflammatory mediators. To identify novel ARE-dependent gene regulators, we screened a human leukocyte cDNA library for candidates that enhanced the activity of a luciferase reporter bearing the ARE sequence from TNF (ARE(TNF)). Among 171 hits, we focused on Zfand5 (zinc finger, AN1-type domain 5), a 23-kDa protein containing two zinc finger domains. Zfand5 expression was induced in macrophages in response to IFN? and Toll-like receptor ligands. Knockdown of Zfand5 in macrophages decreased expression of ARE class II transcripts TNF and COX2, whereas overexpression stabilized TNF mRNA by suppressing deadenylation. Zfand5 specifically bound to ARE(TNF) mRNA and competed with tristetraprolin, a protein known to bind and destabilize class II ARE-containing RNAs. Truncation studies indicated that both zinc fingers of Zfand5 contributed to its mRNA-stabilizing function. These findings add Zfand5 to the growing list of RNA-binding proteins and suggest that Zfand5 can enhance ARE-containing mRNA stability by competing with tristetraprolin for mRNA binding.
Project description:BACKGROUND: UnTranslated Regions (UTRs) of mRNAs contain regulatory elements for various aspects of mRNA metabolism, such as mRNA localization, translation, and mRNA stability. Several RNA stem-loop structures in UTRs have been experimentally identified, including the histone 3' UTR stem-loop structure (HSL3) and iron response element (IRE). These stem-loop structures are conserved among mammalian orthologs, and exist in a group of genes encoding proteins involved in the same biological pathways. It is not known to what extent RNA structures like these exist in all mammalian UTRs. RESULTS: In this paper we took a systematic approach, named GLEAN-UTR, to identify small stem-loop RNA structure elements in UTRs that are conserved between human and mouse orthologs and exist in multiple genes with common Gene Ontology terms. This approach resulted in 90 distinct RNA structure groups containing 748 structures, with HSL3 and IRE among the top hits based on conservation of structure. CONCLUSION: Our result indicates that there may exist many conserved stem-loop structures in mammalian UTRs that are involved in coordinate post-transcriptional regulation of biological pathways.
Project description:The 3' untranslated regions (UTRs) of Ebola virus (EBOV) mRNAs are enriched in their AU content and therefore represent potential targets for RNA binding proteins targeting AU-rich elements (ARE-BPs). ARE-BPs are known to fine-tune RNA turnover and translational activity. We identified putative AREs within EBOV mRNA 3' UTRs and assessed whether they might modulate mRNA stability. Using mammalian and zebrafish embryo reporter assays, we show a conserved, ARE-BP-mediated stabilizing effect and increased reporter activity with the tested EBOV 3' UTRs. When coexpressed with the prototypic ARE-BP tristetraprolin (TTP, ZFP36) that mainly destabilizes its target mRNAs, the EBOV nucleoprotein (NP) 3' UTR resulted in decreased reporter gene activity. Coexpression of NP with TTP led to reduced NP protein expression and diminished EBOV minigenome activity. In conclusion, the enrichment of AU residues in EBOV 3' UTRs makes them possible targets for cellular ARE-BPs, leading to modulation of RNA stability and translational activity.
Project description:Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3'UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing "free" target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of regulation of post-transcriptional regulatory networks.
Project description:The Non-Coding RNA (ncRNA) elements in the 3' Untranslated Regions (3'-UTRs) are known to participate in the genes' post-transcriptional regulations. Inferring co-expression patterns of the genes through clustering these 3'-UTR ncRNA elements will provide invaluable insights for studying their biological functions. In this paper, we propose an improved RNA structural clustering pipeline. Benchmark of the new pipeline on Rfam data demonstrates over 10% performance improvements compared to the traditional hierarchical clustering pipeline. By applying the new clustering pipeline to 3'-UTRs of Drosophila melanogaster's genome, we have successfully identified 184 ncRNA clusters with 91.3% accuracy. One of these clusters corresponds to genes that are preferentially expressed in male Drosophila. Another cluster contains genes that are responsible for the functions of septate junction in epithelial cells. These discoveries encourage more studies on novel post-transcriptional regulation mechanisms.
Project description:We present a combined experimental/computational technology to reveal a catalogue of functional regulatory elements embedded in 3’UTRs of human transcripts. We used a bidirectional reporter system coupled with flow cytometry and high-throughput sequencing to measure the effect of short, non-coding vertebrate-conserved RNA sequences on transcript stability and translation. Information-theoretic motif analysis of the resulting sequence-to-gene-expression mapping revealed linear and structural RNA cis-regulatory elements that positively and negatively modulate the post-transcriptional fates of human transcripts. We explored the functional role of 16332 short human 3'UTR sequences (C3U Library) evolutionarily conserved with P. troglodytes, M. musculus and G. gallus. For sorting the C3U library into subpopulations, we gated the population using FACS into bins each containing 10% of the total number of cells. We collected cells for the top four high expression bins (H10, H20, H30, H40) and the bottom four low expression bins (L10, L20, L30, L40) Multiple samples (C3U library subpopulations) were pooled for each illumina index (decribed n the 'library construction protocol' field). For example, six samples (A-L10 I & II, B-L10 I & II, A-L20 I & II) were all pooled in illumina index CGATGTAT. Therefore, each individual fastq file corresponds to multiple samples. The individual samples were sorted in the processing step using identifiers inside the sequence reads. One single pooled sample was run on both lanes (the extra lane was run for additional reads). The expression level (H: high, L:low or background) and library replicates (A or B) of the pooled library subpopulations are indicated in the sample title.
Project description:G-quadruplex structures are composed of coplanar guanines and are found in both DNA and RNA. They are formed by the stacking of two or more G-quartets that are linked together by three loops. The current belief is that RNA G-quadruplexes include loops of l to 7 nucleotides in length, although recent evidence indicates that the central loop (loop 2) can be longer if loops 1 and 3 are limited to a single nucleotide each. With the objective of broadening the definition of irregular RNA G-quadruplexes, a bioinformatic search was performed to find potential G-quadruplexes located in the untranslated regions of human mRNAs (i.e. in the 5' and 3'-UTRs) that contain either a long loop 1 or 3 of up to 40 nucleotides in length. RNA molecules including the potential sequences were then synthesized and examined in vitro by in-line probing for the formation of G-quadruplex structures. The sequences that adopted a G-quadruplex structure were cloned into a luciferase dual vector and examined for their ability to modulate translation in cellulo Some irregular G-quadruplexes were observed to either promote or repress translation regardless of the position or the size of the long loop they possessed. Even if the composition of a RNA G-quadruplex is not quite completely understood, the results presented in this report clearly demonstrate that what defines a RNA G-quadruplex is much broader than what we previously believed.
Project description:We present a combined experimental/computational technology to reveal a catalogue of functional regulatory elements embedded in 3’UTRs of human transcripts. We used a bidirectional reporter system coupled with flow cytometry and high-throughput sequencing to measure the effect of short, non-coding vertebrate-conserved RNA sequences on transcript stability and translation. Information-theoretic motif analysis of the resulting sequence-to-gene-expression mapping revealed linear and structural RNA cis-regulatory elements that positively and negatively modulate the post-transcriptional fates of human transcripts.
Project description:Novel segmented tick-borne RNA viruses belonging to the group of Jingmenviruses (JMVs) are widespread across Africa, Asia, Europe, and America. In this work, we obtained whole-genome sequences of two Kindia tick virus (KITV) isolates and performed modeling and the functional annotation of the secondary structure of 5' and 3' UTRs from JMV and KITV viruses. UTRs of various KITV segments are characterized by the following points: (1) the polyadenylated 3' UTR; (2) 5' DAR and 3' DAR motifs; (3) a highly conserved 5'-CACAG-3' pentanucleotide; (4) a binding site of the La protein; (5) multiple UAG sites providing interactions with the MSI1 protein; (6) three homologous sequences in the 5' UTR and 3' UTR of segment 2; (7) the segment 2 3' UTR of a KITV/2017/1 isolate, which comprises two consecutive 40 nucleotide repeats forming a Y-3 structure; (8) a 35-nucleotide deletion in the second repeat of the segment 2 3' UTR of KITV/2018/1 and KITV/2018/2 isolates, leading to a modification of the Y-3 structure; (9) two pseudoknots in the segment 2 3' UTR; (10) the 5' UTR and 3' UTR being represented by patterns of conserved motifs; (11) the 5'-CAAGUG-3' sequence occurring in early UTR hairpins. Thus, we identified regulatory elements in the UTRs of KITV, which are characteristic of orthoflaviviruses. This suggests that they hold functional significance for the replication of JMVs and the evolutionary similarity between orthoflaviviruses and segmented flavi-like viruses.