Project description:The extant species of Nautilus and Allonautilus (Cephalopoda) inhabit fore-reef slope environments across a large geographic area of the tropical western Pacific and eastern Indian Oceans. While many aspects of their biology and behavior are now well-documented, uncertainties concerning their current populations and ecological role in the deeper, fore-reef slope environments remain. Given the historical to current day presence of nautilus fisheries at various locales across the Pacific and Indian Oceans, a comparative assessment of the current state of nautilus populations is critical to determine whether conservation measures are warranted. We used baited remote underwater video systems (BRUVS) to make quantitative photographic records as a means of estimating population abundance of Nautilus sp. at sites in the Philippine Islands, American Samoa, Fiji, and along an approximately 125 km transect on the fore reef slope of the Great Barrier Reef from east of Cairns to east of Lizard Island, Australia. Each site was selected based on its geography, historical abundance, and the presence (Philippines) or absence (other sites) of Nautilus fisheries The results from these observations indicate that there are significantly fewer nautiluses observable with this method in the Philippine Islands site. While there may be multiple possibilities for this difference, the most parsimonious is that the Philippine Islands population has been reduced due to fishing. When compared to historical trap records from the same site the data suggest there have been far more nautiluses at this site in the past. The BRUVS proved to be a valuable tool to measure Nautilus abundance in the deep sea (300-400 m) while reducing our overall footprint on the environment.
Project description:Baited remote underwater video stations (BRUVS) are increasingly being used to evaluate and monitor reef communities. Many BRUVS studies compare multiple sites sampled at single time points that may differ from the sampling time of another site. As BRUVS use grows in its application to provide data relevant to sustainable management, marine protected area success, and overall reef health, understanding repeatability of sampling results is vital. We examined the repeatability of BRUVS results for the elasmobranch community both within and between seasons and years, and explored environmental factors affecting abundances at two sites in Indonesia. On 956 BRUVS, 1139 elasmobranchs (69% rays, 31% sharks) were observed. We found consistent results in species composition and abundances within a season and across years. However, elasmobranch abundances were significantly higher in the wet season. The elasmobranch community was significantly different between the two sites sampled, one site being more coastal and easily accessed by fishermen. Our results demonstrate that while BRUVS are a reliable and repeatable method for surveying elasmobranchs, care must be taken in the timing of sampling between different regions to ensure that any differences observed are due to inherent differences amongst sampling areas as opposed to seasonal dissimilarities.
Project description:Effective sampling of marine communities is essential to provide robust estimates of species richness and abundance. Baited Remote Underwater Video Stations (BRUVS) are a useful tool in assessment of fish assemblages, but research on the optimal sampling period required to record common and rare elasmobranch species is limited. An appropriate 'soak time' (time elapsed between settlement of the BRUVS on the seabed and when it is hauled off the seabed) requires consideration, since longer soak times may be required to record species rare in occurrence, or sightings in areas of generally low elasmobranch abundance. We analysed 5352 BRUVS deployments with a range of soak times across 21 countries in the Coral Triangle and Pacific Ocean, to determine the optimal soak time required for sampling reef-associated elasmobranchs, considering species rarity, and community abundance at each site. Species were categorised into 4 'rarity' groups (very rare to common), by their relative occurrence in the dataset, defined simply by the proportion of BRUVS on which they occurred. Individual BRUVS were categorised into 3 'abundance' groups (low to high) by overall relative elasmobranch abundance, defined as total number of all elasmobranchs sighted per unit of sampling effort. The effects of BRUVS soak times, and levels of rarity and abundance groupings, on the time to first sighting (TFS) and time to maximum number of elasmobranchs observed (tMaxN) were examined. We found that TFS occurred earlier for species groups with high occurrence, and on BRUVS with high elasmobranch abundance, yet longer soak times were not essential to observe rarer species. Our models indicated an optimum of 95% of both sighting event types (TFS, tMaxN) was recorded within 63-77 minutes, and a soak time of 60 minutes recorded 78-94% of the elasmobranch sighting events recorded (78-94% of TFS events and 82-90% of tMaxN events), when species rarity and abundance on BRUVS was accounted for. Our study shows that deployments of ~ 77 minutes are optimal for recording all species we observed, although 60 minutes soak time effectively samples the majority of elasmobranch species in shallow coral reef habitats using BRUVS.
Project description:Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30-150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth.
Project description:Understanding how threatened species are distributed in space and time can have direct applications to conservation planning. However, implementing standardized methods to monitor populations of wide-ranging species is often expensive and challenging. In this study, we used baited remote underwater video stations (BRUVS) to quantify elasmobranch abundance and distribution patterns across a gradient of protection in the Pacific waters of Costa Rica. Our BRUVS survey detected 29 species, which represents 54% of the entire elasmobranch diversity reported to date in shallow waters (< 60 m) of the Pacific of Costa Rica. Our data demonstrated that elasmobranchs benefit from no-take MPAs, yet large predators are relatively uncommon or absent from open-fishing sites. We showed that BRUVS are capable of providing fast and reliable estimates of the distribution and abundance of data-poor elasmobranch species over large spatial and temporal scales, and in doing so, they can provide critical information for detecting population-level changes in response to multiple threats such as overfishing, habitat degradation and climate change. Moreover, given that 66% of the species detected are threatened, a well-designed BRUVS survey may provide crucial population data for assessing the conservation status of elasmobranchs. These efforts led to the establishment of a national monitoring program focused on elasmobranchs and key marine megafauna that could guide monitoring efforts at a regional scale.
Project description:BackgroundContinental slopes are among the steepest environmental gradients on earth. However, they still lack finer quantification and characterisation of their faunal diversity patterns for many parts of the world.Methodology/principal findingsChanges in fish community structure and diversity along a depth gradient from 50 to 1200 m were studied from replicated stereo baited remote underwater video deployments within each of seven depth zones at three locations in north-eastern New Zealand. Strong, but gradual turnover in the identities of species and community structure was observed with increasing depth. Species richness peaked in shallow depths, followed by a decrease beyond 100 m to a stable average value from 700 to 1200 m. Evenness increased to 700 m depth, followed by a decrease to 1200 m. Average taxonomic distinctness △(+) response was unimodal with a peak at 300 m. The variation in taxonomic distinctness Λ(+) first decreased sharply from 50 to 300 m, then increased beyond 500 m depth, indicating that species from deep samples belonged to more distant taxonomic groups than those from shallow samples. Fishes with northern distributions progressively decreased in their proportional representation with depth whereas those with widespread distributions increased.Conclusions/significanceThis study provides the first characterization of diversity patterns for bait-attracted fish species on continental slopes in New Zealand and is an imperative primary step towards development of explanatory and predictive ecological models, as well as being fundamental for the implementation of efficient management and conservation strategies for fishery resources.
Project description:Competitive behavioural interactions between invasive and native freshwater crayfish are recognised as a key underlying mechanism behind the displacement of natives by invaders. However, in situ investigations into behavioural interactions between invasive and native crayfish are scarce. In Australian freshwater systems, the invasive Cherax destructor has spread into the ranges of many native Euastacus species, including the critically endangered Euastacus dharawalus. Staged contests between the two species in a laboratory setting found E. dharawalus to be the dominant competitor, however, this has yet to be corroborated in situ. Here, we used baited remote underwater video (BRUV) to examine in situ intra- and inter-specific behavioural interactions between E. dharawalus and C. destructor. We sought to evaluate patterns of dominance and differential contest dynamics between the species to provide indications of competition between the two species. We found E. dharawalus to be dominant over C. destructor based on pooled interspecific interaction data and size-grouped interactions where C. destructor was the smaller opponent. Alarmingly, however, when C. destructor was within a 10% size difference the dominance of E. dharawalus was lost, contrasting with the outcomes of the laboratory-staged study. In addition, we report that small C. destructor initiated significantly more contests than larger conspecifics and larger E. dharawalus, a pattern that was not observed in smaller E. dharawalus. Further, intraspecific interactions between C. destructor were significantly longer in duration than intraspecific interactions between E. dharawalus, indicating a willingness to continue fighting. Concerningly, these outcomes point towards inherent and greater aggressiveness in C. destructor relative to E. dharawalus and that only larger E. dharawalus hold a competitive advantage over C. destructor. Therefore, we conclude that C. destructor represents a substantial threat to E. dharawalus through competitive behavioural interactions. Further, due to the disparity between our findings and those produced from laboratory-staged contests, we recommend the use of in situ studies when determining the behavioural impacts of invasive crayfish on natives.
Project description:Threatened chondrichthyan diversity is high in developing countries where scarce resources, limited data, and minimal stakeholder support often render conservation efforts challenging. As such, data on many species, including many evolutionarily distinct endemics, is poor in these countries and their conservation status and habitat needs remain uncertain. Here, we used baited remote underwater videos (BRUVs; n = 419) conducted at 167 sites over two years to assess the frequency of occurrence (FO), relative abundance, diversity, and structure of chondrichthyan assemblages in one of the world's chondrichthyan biodiversity and endemism hotspots, South Africa. We compared chondrichthyan assemblages across three habitat types, and between unprotected and protected areas (a small marine protected area [MPA] and a larger, seasonal whale sanctuary). Although in total we observed 18 chondrichthyan species (11 families), over half of all observations were of just two species from the same family of mesopredatory endemic catsharks; only 8.8% were larger shark species. These mesopredatory species do not appear to be threatened, but some skates and larger shark species, including some endemics, were much rarer. Overall chondrichthyan FO was high (81% of all BRUVs); FO was higher in kelp (100% of BRUVS) and reef (93%) sites than at sites in sandy habitat (63%), which had a distinct chondrichthyan community. Independent of habitat, the chondrichthyan community did not relate strongly to protection. Because sites with kelp and reef habitat were rare in the whale sanctuary, this protected area had a lower chondrichthyan FO (67% of BRUVs) than either unprotected sites (81%) or those in the small MPA (98%), as well as having lower chondrichthyan relative abundance and species richness. Our study provides evidence of the importance of distinct habitat types to different chondrichthyan species, and suggests that even small MPAs can protect critical habitats, such that they may provide safe refuge for endemic species as anthropogenic pressures increase.
Project description:BackgroundAssessing fish assemblages in subtidal and intertidal habitats is challenging due to the structural complexity of many of these systems. Trapping and collecting are regarded as optimal ways to sample these assemblages, but this method is costly and destructive, so researchers also use video techniques. Underwater visual census and baited remote underwater video stations are commonly used to characterise fish communities in these systems. More passive techniques such as remote underwater video (RUV) may be more appropriate for behavioural studies, or for comparing proximal habitats where the broad attraction caused by bait plumes could be an issue. However, data processing for RUVs can be time consuming and create processing bottlenecks.MethodsHere, we identified the optimal subsampling method to assess fish assemblages on intertidal oyster reefs using RUV footage and bootstrapping techniques. We quantified how video subsampling effort and method (systematic vs random) affect the accuracy and precision of three different fish assemblage metrics; species richness and two proxies for the total abundance of fish, MaxNT and MeanCountT, which have not been evaluated previously for complex intertidal habitats.ResultsResults suggest that MaxNT and species richness should be recorded in real time, whereas optimal sampling for MeanCountT is every 60 s. Systematic sampling proved to be more accurate and precise than random sampling. This study provides valuable methodology recommendations which are relevant for the use of RUV to assess fish assemblages in a variety of shallow intertidal habitats.
Project description:Baited Underwater Video (BUV) systems have become increasingly popular for assessing marine biodiversity. These systems provide video footage from which biologists can identify the individual fish species present. Here we explore the relevance of spatial dependence and marine park boundaries while estimating the distribution and habitat associations of the commercially and recreationally important snapper species Chrysophrys auratus in Moreton Bay Marine Park during a period when new Marine National Parks zoned as no-take or "green" areas (i.e., areas with no legal fishing) were introduced. BUV studies typically enforce a minimum distance among BUV sites, and then assume that observations from different sites are independent conditional on the measured covariates. In this study, we additionally incorporated the spatial dependence among BUV sites into the modelling framework. This modelling approach allowed us to test whether or not the incorporation of highly correlated environmental covariates or the geographic placement of BUV sites produced spatial dependence, which if unaccounted for could lead to model bias. We fitted Bayesian logistic models with and without spatial random effects to determine if the Marine National Park boundaries and available environmental covariates had an effect on snapper presence and habitat preference. Adding the spatial dependence component had little effect on the resulting model parameter estimates that emphasized positive association for particular coastal habitat types by snapper. Strong positive relationships between the presence of snapper and rock habitat, particularly rocky substrate composed of indurated freshwater sediments known as coffee rock, and kelp habitat reinforce the consideration of habitat availability in marine reserve design and the design of any associated monitoring programs.